MoreRSS

site iconHackadayModify

Hackaday serves up Fresh Hacks Every Day from around the Internet. Our playful posts are the gold-standard in entertainment for engineers and engineering enthusiasts.
Please copy the RSS to your reader, or quickly subscribe to:

Inoreader Feedly Follow Feedbin Local Reader

Rss preview of Blog of Hackaday

Only Known Copy of UNIX V4 Recovered From Tape

2025-12-29 20:00:00

UNIX version 4 is quite special on account of being the first UNIX to be written in C instead of PDP-11 ASM, but it was also considered to have been lost to the ravages of time. Joyfully, we can report that the more than fifty year old magnetic tape that was recently discovered in a University of Utah storeroom did in fact contain the UNIX v4 source code. As reported by Tom’s Hardware, [Al Kossow] of Bitsavers did the recovery by passing the raw flux data from the tape read head through the ReadTape program to reconstruct the stored data.

Since the tape was so old there was no telling how much of the data would still be intact, but fortunately it turned out that the tape was not only largely empty, but the data that was on it was in good nick. You can find the recovered files here, along with a README, with Archive.org hosting the multi-GB raw tape data. The recovered data includes the tape file in SimH format and the filesystem

Suffice it to say that you will not run UNIX v4 on anything other than a PDP-11 system or emulated equivalent, but if you want to run its modern successors in the form of BSD Unix, you can always give FreeBSD a shot.

39C3: Hardware, and the Hard Bit

2025-12-29 17:00:26

The 39th annual Chaos Communication Congress (39C3) is underway, and it kicked off with a talk that will resonate deeply with folks in the Hackaday universe. [Kliment] gave an impassioned invitation for everyone to start making hardware based on his experience both in the industry and in giving an intro-to-surface-mount workshop to maybe thousands of hackers over the years.

His main points are that the old “hardware is hard” cliche is overdone. Of course, working on a complicated high-reliability medical device isn’t child’s play, but that’s not where you start off. And getting started in hardware design and hobby-scale manufacture has never been easier or cheaper, and the open-source tooling gives you a foot in the door.

He tells the story of an attendee at a workshop who said “I kept waiting for the hard part to come, but then I was finished.”  Starting off with the right small-scale projects, learning a few techniques, and ramping up skills built on skills is the way to go. ([Kliment] is a big proponent of hand-placed hot-plate reflow soldering, and we concur.)

This is the talk that you want to show to your software friends who are hardware-curious. It’s also a plea for more experimentation, more prototyping, more hacking, and simply more people in the hardware / DIY electronics scene. Here at Hackaday, it’s maybe preaching to the choir, but sometimes it’s just nice to hear saying it all out loud.

The Birotary Engine Explained

2025-12-29 14:00:43

Everyone generally knows about piston and rotary engines, with many a flamewar having been waged over the pros and cons of each design. The “correct” answer is thus to combine both into a single engine design. The resulting birotary engine comes courtesy of Czech company [Knob Engines] which makes their special engine for the aviation market. The workings of this engine and why it makes perfect sense for smaller airplanes is explained by [driving 4 answers] in a recent video.

Naturally, it’s at best confusing to call an engine a “rotary”, as this covers many types of engines. One could consider the birotary engine perhaps a cross between the traditional rotary piston engines that powered early aircraft and the Wankel rotary engines that would appear much later. The fact that both the housing and the crankshaft rotate reinforces this notion of a piston rotary, while it keeps the fixed ports and glow plugs on the housing that is typical of a Wankel-style engine. Having both the housing and crankshaft rotate is also why it’s called the ‘birotary’.

The claimed benefits of this design include a small size, low vibrations, reduced gyroscopic effect due to counter-rotation, no apex seals, and less mechanically complex than a piston engine. This comes at the cost of a very short stroke length and thus the need for a relatively high RPM and slow transition between power output levels, but those disadvantages are why small airplanes and UAVs are being targeted.

Streaming Music to Cassette

2025-12-29 11:00:48

In almost every measurable way, a lossless digital audio file is superior to any analog media. This doesn’t mean that analog audio isn’t valuable though; plenty of people appreciate the compression, ambiance, and other side-effects of listening to a vinyl record or a cassette tape despite the technical limitations. To combine the audio technology of the modern world with these pleasant effects of old analog media, [Julius] built a cassette-based media streamer.

The music playback device takes input from a Bluetooth stream of some sort, converts the digital stream to analog, combines the stereo signal into a mono signal, and then records it to a cassette tape. The tape is then looped through to a playback device which outputs the sound to a single speaker. This has the effect of functioning as a tape delay device, and [Julius] did add input and output jacks to use it as such, but in its default state it has the effect of taking modern streaming through a real analog device and adding the compression and saturation that cassette tapes are known for.

The design of the device is impressive as well, showing off the tape loop and cassette front-and-center with a fluorescent vu meter on the side and a metal case. Getting all of this to work well together wasn’t entirely smooth, either, as [Julius] had to sort out a number of issues with the electronics to keep various electric noises out of the audio signal. Retro analog music players are having a bit of a resurgence right now, whether that’s as a revolt against licensed streaming services or as a way to experience music in unique ways, and our own [Kristina Panos] recently went down an interesting rabbit hole with one specific type of retro audio player.

Retro Semiconductors: The Silicon Controlled Rectifier

2025-12-29 08:00:50

A photo of the circuit on a breadboard

Over on YouTube [Lockdown Electronics] reviews an old bit of kit known as the Silicon Controlled Rectifier (SCR). Invented in the 1950s the SCR is a type of thyristor and they were popular back in the 1970s. They are often replaced these days by the TRIAC and the MOSFET but you might still find some old schematics that call for them and you can still buy them.

The SCR is a three terminal electronic switch which latches on. You apply a signal at the gate which allows the other two pins, the anode and cathode, to conduct; and they continue to do so until power is removed. The silicon inside the device is comprised of three semiconductor junctions, as: PNPN. The P on the left is the anode, the N on the right is the cathode, and the P in the right middle is the gate.

In the video [Lockdown Electronics] runs us through how to use them and compares them with a TRIAC. Unfortunately the lighting is a bit off for the demo of the SCR with AC power. To finish the video [Lockdown Electronics] wraps up with a windshield wiper control circuit from back in 1977 which is based around SCR technology. If you’d like to learn more about the SCR technology we have covered the basics.

Photographing Cosmic Rays with a Consumer Camera

2025-12-29 05:00:07

The reason photographic darkrooms are needed is because almost any amount of light can ruin the film or the photographic paper before they are fixed. Until then these things are generally kept in sealed, light-proof containers until they are ready to be developed. But there are a few things that can ruin film even then, most notably because some types of film are sensitive to ionizing radiation as well as light. This was famously how [Henri Becquerel] discovered that uranium is radioactive, but the same effect can be used to take pictures of cosmic rays.

In [Becquerel]’s case, a plate of photographic material was essentially contaminated from uranium by accident, even though the plate was in a completely dark area otherwise. Cosmic rays are similar to this type of radiation in that they are also ionizing and will penetrate various materials even in places we might otherwise think of as dark. For this artistic and scientific experiment, [Gabriel] set up a medium-format digital camera in a completely dark room and set it to take a 41-minute exposure. The results are fairly impressive and are similar to [Becquerel]’s experiment except that [Gabriel] expected to see something whereas the elder scientist was more surprised.

Like cosmic rays or radiation from uranium, there is a lot flying around that is invisible to the human eye but that can be seen with the right equipment and some effort. Although [Gabriel] is using a camera with a fairly large sensor that we might not all have access to, in theory this could work with more off-the-shelf digital photography equipment or even film cameras. A while ago we even saw a build that used UV to see other invisible phenomena like electrical arcing.