2025-09-17 13:00:32
When Deluxe Paint came out with the original Amiga in 1985, it was the killer app for the platform. [Christopher Drum] starts his recent article on just that note, remembering the day he and his mother walked into a computer store, and walked out with a brand new Amiga… thanks entirely to Deluxe Paint. Forty years on, how well can this killer app compete?
[Christopher] isn’t putting Deluxe Paint head-to-head with modern Photoshop; they’re hardly in the same class. Not Photoshop, no, but modern applications that do what Deluxe Paint did so well: pixel art. There was no need to call it pixel art back then, no, but with the resolutions on hand, all digital art was pixel art in 1985.
Or 1989, which is when Deluxe Paint III came out– that’s the last version written by Dan Silva and coincidentally the last version [Christopher] owned, and the one he focuses in on his tests. It has held up amazingly well.
Sure, you don’t get a full 24-bit colour palette, but most pixel artists stick to limited palettes still anyway. You don’t quite get a modern UI, but presence of useful keyboard shortcuts allows a Hands-On-Keybord-And-Mouse (We’ll call it HOKAM, in honour of HOTAS in aerospace) workflow that is incredibly efficient.
About the only things [Christopher] found Deluxe Paint III lacked compared to its successors were a proper layering system, and of course the infinite undo we’ve all gotten so used to. (DPIII has an undo button, but it could only store one operation.) He also complained about cursor latency for some brushes, but we wonder if that might have had something to do with Windows and the emulation layer adding a delay. One thing Amiga was always known for back in the day was the snappy cursor movement, even when the processor was loaded.
There were just as many features he found had been forgotten in the new generation — like palatte swapping animations, or flood-filling line gradients.
Anyone who owned an Amgia probably has fond memories of it, but alas, in spite of Commodore’s recent resurrection, we’re not likely to see a new one soon. On the other hand, at least when it comes to pixel art, there’s apparently no need to upgrade.
(Thumbnail and header image by Avril Harrison, distributed by Electronic Arts with Deluxe Paint.)
2025-09-17 10:00:06
A new kind of ‘camera’ is poking at the invisible world of the human body – and it’s made from the same weird crystals that once shook up solar energy. Researchers at Northwestern University and Soochow University have built the first perovskite-based gamma-ray detector that actually works for nuclear medicine imaging, like SPECT scans. This hack is unusual because it takes a once-experimental lab material and shows it can replace multimillion-dollar detectors in real-world hospitals.
Current medical scanners rely on CZT or NaI detectors. CZT is pricey and cracks like ice on a frozen lake. NaI is cheaper, but fuzzy – like photographing a cat through steamed-up glass. Perovskites, however, are easier to grow, cheaper to process, and now proven to detect single photons with record-breaking precision. The team pixelated their crystal like a smartphone camera sensor and pulled crisp 3D images out of faint radiation traces. The payoff: sharper scans, lower radiation doses, and tech that could spread beyond rich clinics.
Perovskite was once typecast as a ‘solar cell wonder,’ but now it’s mutating into a disruptive medical eye. A hack in the truest sense: re-purposing physics for life-saving clarity.
2025-09-17 07:00:28
Why build a telescope? YOLO, as the kids say. Having decided that, one must decide what type of far-seer one will construct. For his 10″ reflector, [Carl Anderson] once again said “Yolo”— this time not as a slogan, but in reference to a little-known type of reflecting telescope.
The Yolo-pattern telescope was proposed by [Art Leonard] back in the 1960s, and was apparently named for a county in California. It differs from the standard Newtonian reflector in that it uses two concave spherical mirrors of very long radius to produce a light path with no obstructions. (This differs from the similar Schiefspiegler that uses a convex secondary.) The Yolo never caught on, in part because of the need to stretch the primary mirror in a warping rig to correct for coma and astigmatism.
[Carl] doesn’t bother with that, instead using modern techniques to precisely calculate and grind the required toric profile into the mirror. Grinding and polishing was done on motorized jigs [Carl] built, save for the very final polishing. (A quick demo video of the polishing machine is embedded below.)
The body of the telescope is a wooden truss, sheathed in plywood. Three-point mirror mounts alowed for the final adjustment. [Carl] seems to prefer observing by eye to astrophotography, as there are no photos through the telescope. Of course, an astrophotographer probably would not have built an F/15 (yes, fifteen) telescope to begin with. The view through the eyepiece on the rear end must be astounding.
If you’re inspired to spend your one life scratch-building a telescope, but want something more conventional, check out this comprehensive guide. You can go bit more modern with 3D printed parts, but you probably don’t want to try spin-casting resin mirrors. Or maybe you do: YOLO!
2025-09-17 04:00:24
A laptop is one of the greatest tools at the disposal of a hacker. They come in all manner of shapes and sizes with all manner of features. But perhaps the greatest limit held by all laptops is their chiclet keyboard. While certainly serviceable, a proper mechanical keyboard will always reign supreme, which is why [flurples] built a laptop around a mechanical keyboard.
Such a keyboard could not fit inside any normal laptop, so a custom machined case was in order. The starting point was a standard Framework Laptop 13. Its open source documentation certainly helped the project, but numerous parts such as the audio board and fingerprint sensor are not documented making for a long and tedious process. But the resulting machined aluminum case looks at least as good as a stock Framework chassis, all be it, quite a bit thicker.
The resulting laptop retains three of the four modular input ports the Framework is known for, but one was sacrificed for a USB-A hub and HDMI port exposed by a custom carrier. Only one of the USB-As is externally accessible, with one used as a mouse dongle hider, and the other for keyboard connectivity.
The keyboard itself uses Kailh Choc Sunset switches, with the PCB resting on o rings for a more consistent typing experience. The key caps come from two sets of caps, with the shift and escape keys being dyed an excellent shade of orange. Sitting on the right hand side below the keyboard is a trio of rotary encoders. Using low profile encoders, the knobs blend neatly into the overall laptop, perhaps being invisible at first glance.
The rotary encoders forced a speaker arrangement redesign. Instead of siting next to the battery where the rotary encoders now are, they are attached to the top cover above the battery. This change required lengthening the speaker connector cables, but otherwise worked extremely well.
If you enjoy the work of laptop case replacement, make sure to check out this Toshiba Libretto get a fresh lease on life with a re-designed case.
2025-09-17 02:30:17
For most people, experimentation with film photography comes in the form of the 35 mm format. Its ubiquity in snapshot photography means cameras are readily available at all levels, and the film offers a decent compromise between resolution and number of shots per dollar spent.
For those who wish to take their film photography further there’s the so-called medium format 120 roll film, but here opting for a higher-end camera can become expensive. Fortunately [Javier Doroteo] is here with a 3D printed medium format camera designed to use lenses intended for the Mamiya Press cameras, and from where we’re sitting it looks very nicely designed indeed.
All the files can be found on Printables along with a list of the other parts required. It’s made simple by the Mamiya lenses incorporating the shutter, but there’s still a lot of attention that has been paid to the back of the camera. This is the third version of the design and it shows, details such as the film holder and light proofing are well thought out.
Photography is so often a world in which collecting the latest kit is seen as more important than the photographs themselves, so we like and encourage camera hackers as a reaction to all that. If you’d like to see another medium format camera, this certainly isn’t the first we’ve brought you.
2025-09-17 01:00:00
In theory, all parts are ideal and do just exactly what they say on the box. In practice, everything has its limits, most components have non-ideal characteristics, and you can even turn most parts’ functionality upside down.
The Component Abuse Challenge celebrates the use of LEDs as photosensors, capacitors as microphones, and resistors as heat sources. If you’re using parts for purposes that simply aren’t on the label, or getting away with pushing them to their absolute maximum ratings or beyond, this is the contest for you.
If you committed these sins against engineering out of need, DigiKey wants to help you out. They’re probably got the right part, and they’re providing us with three $150 gift certificates to give out to the top projects. (If you’re hacking just for fun, well, you’re still in the running.)
This is the contest where the number one rule is that you must break the rules, and the project has to work anyway. You’ve got eight weeks, until Nov 11th. Open up a project over at Hackaday.io, pull down the menu to enter in the contest, and let the parts know no mercy!
We’ve come up with a few honorable mention categories to get your ideas flowing. You don’t have to fit into one of these boxes to enter, but we’ll be picking our favorites in these four categories for a shout-out when we reveal the winners.
Diodes can do nearly anything. Their forward voltage varies with temperature, making them excellent thermometers. Even the humble LED can both glow and tell you how hot it is. And don’t get us started on the photo-diode. They are not just photocells, but radiation detectors.
Here’s a trick to double the current that a 555 timer can sink. We’d love to see other cases of 555 abuse, of course, but any other IC is fair game.
Resistors get hot. Thermochromic paint changes color with temperature. Every five years or so, we see an awesome new design. This ancient clock of [Sprite_tm]’s lays the foundation, [Daniel Valuch] takes it into the matrix, and [anneosaur] uses the effect to brighten our days.
Of course, thin traces can also be resistors, and resistors can get really hot. Check out [Carl Bujega]’s self-soldering four-layer PCB. And while magnetism is nearly magic, a broken inductor can still be put to good use as a bike chain sensor.
Or maybe you have a new twist on the absolutely classic LEDs-as-light-sensors? Just because it’s been done since the early says of [Forrest Mims] doesn’t mean we don’t want to see your take.
Get out there and show us how you can do it wrong too.