2026-02-17 17:00:25

Although off-the-shelf breadboards are plentiful and cheap, they almost always seem to use the same basic design. Although you can clumsily reassemble most of them by removing the voltage rail section and merging a few boards together, wouldn’t it be nice if you had a breadboard that you could stick e.g. one of those wide ESP32 development boards onto and still have plenty of holes to poke wires and component leads into? Cue [Ludwin]’s 3D printable breadboard design that adds a big hole where otherwise wasted contact holes would be.
The related Instructables article provides a visual overview of the rationale and the assembly process. Obviously only the plastic shell of the breadboard is printed, after which the standard metal contacts are inserted. These contacts can be ‘borrowed’ from commercial boards, or you can buy the contacts separately.
For the design files there is a GitHub repository, with breadboard designs that target the ESP32, Raspberry Pi Pico, and the Arduino Nano. An overview of the currently available board designs is found on the Hackaday.io project page, with the top image showing many of them. In addition to the single big space design there are also a few variations that seek to accommodate just about any component and usage, making it rather versatile.
2026-02-17 14:00:51


Because size matters when it comes to statistics, [Will Prowse] decided to not just bank on his handful of failed Battle Born LFP batteries when it came to documenting their failure modes. Instead he got a whole gaggle of them from a viewer who had experienced failures with their Battle Born LFP batteries for an autopsy, adding a total of 15 samples to the data set.
Interestingly, the symptoms of these dead batteries are all over the place, from a refusal to charge, some have the overheating terminal, some do not show any sign of life, others have charged cells but a non-responsive BMS, etc. As [Will] notes, it’s important to test batteries with a load and a charger to determine whether they are functional not just whether you can measure a charge.
Although some of the batteries still showed enough signs of life to be put aside for some load testing, the remaining ones were cut open to check their insides. This revealed the typical molten plastic at the terminals, but also a lot of very loose connections for the internal wiring. Another battery showed signs of corrosion inside, which could be due to either moisture intrusion or a cell having leaked its electrolyte.
While the full results will hopefully be released soon, the worrying thing about this latest batch of Battle Born LFP batteries is that they span quite a few years, with one being from 2018. Although it’s comforting that not every one of these batteries is necessarily going to catch on fire within its approximate 8-year lifespan, a lot seems to depend on exactly how you load and charge them, as [Will] is trying to figure out with the upcoming load testing. With the unit that he recently purchased for testing it turned out that lower currents actually made the melting problem much worse.
Between this video and the much awaited follow-up, [Will] actually got his hands on a troubled 300A-rated industrial Battle Born battery. During testing that one actually failed violently with a cell venting and the loose BMS rattling around in the case.
2026-02-17 11:00:10

With more and more sensors being crammed into the consumer devices that many of us wear every day, the question of where medical devices begin and end, and how they should be regulated become ever more pertinent. When a ‘watch’ no longer just shows the time, but can keep track of a dozen vital measurements, and the line between ‘earbud’ and ‘hearing aid’ is a rather fuzzy one, this necessitates that institutions like the US FDA update their medical device rules, as was done recently in its 2026 update.
This determines how exactly these devices are regulated, and in how far their data can be used for medical purposes. An important clarification made in the 2026 update is the distinction between ‘medical information’ and ‘signals/patterns’. Meaning that while a non-calibrated fitness tracker or smart watch does not provide medically valid information, it can be used to detect patterns and events that warrant a closer look, such as indications of arrhythmia or low blood oxygen saturation.
As detailed in the IEEE Spectrum article, these consumer devices are thus ‘general wellness’ devices, and should be marketed as such, without embellished claims. Least of all should they be sold as devices that can provide medical information.
Another major aspect with these general wellness devices is what happens to the data that they generate. While not medical information, it does provide health information about a person that e.g. a marketing company would kill for to obtain. This privacy issue is unresolved in the US market, while other countries prescribe strict requirements about such data handling.
Effectively, this leaves the designers of wearables relatively free to do whatever they want, as long as they do not claim that the medical data being produced from any sensors is medical information. How this data is being handled is strictly regulated in most markets, except for the US, which is quite worrying and something you should definitely be aware of.
As for other medical device purposes like hearing aids, the earbuds capable of this fortunately do not generally collect information. They do need to have local regulatory approval to enable the feature, however, even if you can bypass any geofencing with some creative hacking.
2026-02-17 08:00:41

[GreatScott] has recently been tinkering in the world of radio frequency emissions, going so far as to put their own designs in a proper test chamber to determine whether they meet contemporary standards for noise output. This led them to explore the concept of shielding, and how a bit of well-placed metal can make all the difference in this regard.
The video focuses on three common types of shielding—absorber sheets, shielding tapes, and shielding cabinets. A wide variety of electronic devices use one or more of these types of shielding. [GreatScott] shows off their basic effectiveness by putting various types of shielding in between a noise source and a near-field probe hooked up to a receiver. Just placing a bit of conductive material in between the two can cut down on noise significantly. Then, a software defined radio (SDR) was busted out for some more serious analysis. [GreatScott] shows how Faraday cages (or simple shielding cabinets] can be used to crush down spurious RF outputs to almost nothing, and how his noisy buck-boost designs can be quieted down with the use of the right absorber sheets that deal well with the problematic frequencies in question. The ultimate upshot of the tests is that higher frequencies respond best to conductive shielding that is well enclosed, while lower frequency noise benefits from more absorptive shielding materials with the right permeability for the job.
Shielding design can be a complex topic that you probably won’t master in a ten minute YouTube video, but this content is a great primer if you’re new to the topic. We’ve covered the topic before, too, particularly on how a bit of DIY shielding can really aid a cheap SDR’s performance. Video after the break.
2026-02-17 05:00:40

For a long while, digital single-lens reflex (DSLR) cameras were the king of the castle for professional and amateur photography. They brought large sensors, interchangeable lenses, and professional-level viewfinders to the digital world at approachable prices, and then cemented their lead when they started being used to create video as well. They’re experiencing a bit of a decline now, though, as mirrorless cameras start to dominate, and with that comes some unique opportunities. To attach a lens meant for a DSLR to a mirrorless camera, an adapter housing must be used, and [Ancient] found a way to squeeze a computer and a programmable aperture into this tiny space.
The programmable aperture is based on an LCD screen from an old cell phone. LCD screens are generally transparent until their pixels are switched, and in most uses as displays a backer is put in place so someone can make out what is on the screen. [Ancient] is removing this backer, though, allowing the LCD to be completely transparent when switched off. The screen is placed inside this lens adapter housing in the middle of a PCB where a small computer is also placed. The computer controls the LCD via a set of buttons on the outside of the housing, allowing the photographer to use this screen as a programmable aperture.
The LCD-as-aperture has a number of interesting uses that would be impossible with a standard iris aperture. Not only can it function as a standard iris aperture, but it can do things like cycle through different areas of the image in sequence, open up arbitrary parts or close off others, and a number of other unique options. It’s worth checking out the video below, as [Ancient] demonstrates many of these effects towards the end. We’ve seen some of these effects before, although those were in lenses that were mechanically controlled instead.
Thanks to [kemfic] for the tip!
2026-02-17 03:30:06

You may not remember [Mr. Wizard], but he was a staple of nerd kids over a few decades, teaching science to kids via the magic of television. The Computer History Archives Project has a partially restored film of [Mr. Wizard] showing off sounds and noise on a state-of-the-art (for 1963) Tektronix 504 oscilloscope. He talks about noise and also shows the famous IBM mainframe rendition of the song “Daisy Bell.” You can see the video along with some extras below.
You might recall that the movie “2001: A Space Odyssey” paid homage to the IBM computer’s singing debut by having HAL 9000 sing the same song as it is being deactivated. The idea that HAL was IBM “minus one” has been repeatedly denied, but we still remain convinced.
Can you imagine a TV show these days that would teach kids about signal-to-noise ratio or even show them an actual oscilloscope? We suppose that’s what YouTube is for.
At about the 17-minute mark, you can see some enormous walkie-talkies. A far cry from today’s cell phones. At the 27-minute mark, another film shows how engineers at Bell created the song using a mainframe.
We wish there were a modern version of [Mr. Wizard]. Then again, there’s no reason you can’t fill in. You might not be on TV, but you can always drop in on a few classrooms.