MoreRSS

site iconPanSci | 泛科學修改

全台最大科學知識社群
请复制 RSS 到你的阅读器,或快速订阅到 :

Inoreader Feedly Follow Feedbin Local Reader

PanSci | 泛科學的 RSS 预览

為什麼肚子總是凸凸的?不只是脂肪,你可能忽略了腹直肌分離

2025-08-01 11:15:54

圖 / 照護線上

「那是一位40歲的婦人,身形瘦小但是肚子卻像懷孕般隆起,每次搭公車時,都有人主動讓座。」整形外科陳彥州醫師表示,「經過檢查後,其實是重度腹直肌分離,分離的距離達到10公分。」

經過討論後,決定進行腹部整形手術,將分離的腹直肌縫合,同時切除多餘的贅皮。陳彥州醫師說,做完腹部整形手術後,腹部就全部變平了,而且只有住院一個晚上,在家休息一個禮拜,之後便回復正常工作與生活,恢復期比想像的短很多,讓她非常開心。

人體有兩條腹直肌,中間有一條腹白線將兩側的腹直肌連在一起,如果腹部被撐開,就可能造成「腹直肌分離(diastasis recti)」。陳彥州醫師解釋,最常見的原因就是因為懷孕,腹內壓力增大,將腹白線撐開,進而導致腹直肌分離的現象。如果身材非常瘦小、懷孕間隔較短、多胞胎懷孕、胎兒體重過重都會增加腹直肌分離的機會。

圖 / 照護線上

腹直肌分離使得肚臍周圍的觸感柔軟,而且會造成腹部外觀改變,肚臍上下出現明顯的隆起,還可能會造成多種症狀。由於腹部隆起、身形改變,導致脊椎的受力改變,所以腹直肌分離的病患,常常會有長期腰痠背痛的現象。

-----廣告,請繼續往下閱讀-----

腹直肌中間的腹白線其實是腹部核心肌群的重要樞紐,腹直肌分離後核心肌群就比較無法使力,長期下來就可能出現便秘、脹氣、消化不良等問題。陳彥州醫師強調,「腹直肌分離可不是『單純的美觀問題』,還會影響核心穩定性、姿勢、甚至內臟支撐。」

圖 / 照護線上

大家可以自我檢查是否有腹直肌分離的狀況,陳彥州醫師說,先平躺,雙膝微微彎曲,然後做類似仰臥起坐的動作。這時候可以把手指放在肚臍上下,摸看看是否有凹陷的現象。

如果凹陷的寬度超過一個指幅(約兩公分),可能就有腹直肌分離的狀況。必要時可以做進一步的影像檢查,例如超音波、電腦斷層。

腹直肌分離手術治療方式解析

腹直肌分離的治療與嚴重程度有關,陳彥州醫師表示,臨床上會測量肚臍上下各4.5公分腹直肌分離的寬度。

-----廣告,請繼續往下閱讀-----
  • 正常(小於2公分):如果沒有症狀就不需要治療。
  • 輕度(2至3公分):患者可能覺得核心肌群比較無力,可以做一些核心肌群的訓練。
  • 中度(3至5公分):通常會伴隨腹部鬆弛、核心無力,如果肌力訓練沒有辦法改善,就可以考慮手術。
  • 重度(大於5公分):患者的肚子會明顯凸起,伴隨腰痠背痛,建議手術治療。

手術治療的方式包括「內視鏡腹部整形手術(endoscopic abdominoplasty)」、「全腹部整形手術(full abdominoplasty)」,醫師會根據皮膚鬆弛嚴重程度來決定手術方式。陳彥州醫師建議,如果皮膚鬆弛不嚴重,但是腹直肌分離比較厲害,可以採用內視鏡腹部整形手術。內視鏡會從恥骨上方利用一個類似剖腹產約10公分的小切口進入,把所有的腹直肌修補起來。內視鏡腹部整形手術的傷口較小,也不用重做肚臍,大約適用於約5%的腹直肌分離患者。

圖 / 照護線上

如果皮膚鬆弛很嚴重,便得採用全腹部整形手術,包括修補腹直肌分離、切除多餘的皮膚、然後再重新做一個新的肚臍。

由於腹部整形手術的範圍較廣,為了降低皮膚壞死的風險,術前一個月都不可以抽菸。陳彥州醫師說,接受腹部整形手術後,必須穿著塑身衣一個月。如果要運動,建議在一個月之後再循序漸進地開始。

根據文獻報告,腹部整形手術除了可以重建腹部外觀,也有機會改善下背痛、漏尿等症狀,幫助提升患者的自信心以及生活品質。陳彥州醫師說,腹直肌分離不只是單純的美觀問題,如果發現相關狀況,建議及早就醫接受治療!

-----廣告,請繼續往下閱讀-----

筆記重點整理

  • 人體有兩條腹直肌,中間有一條腹白線將兩側的腹直肌連在一起,如果腹部被撐開,就可能造成「腹直肌分離」。最常見的原因就是因為懷孕,腹內壓力增大,將腹白線撐開,進而導致腹直肌分離的現象。如果身材非常瘦小、懷孕間隔較短、多胞胎懷孕、胎兒體重過重都會增加腹直肌分離的機會。
  • 腹直肌分離使得肚臍周圍的觸感柔軟,而且會造成腹部外觀改變,肚臍上下出現明顯的隆起,還可能會造成多種症狀。由於腹部隆起、身形改變,導致脊椎的受力改變,所以腹直肌分離的病患,常常會有長期腰痠背痛的現象。腹直肌分離後核心肌群就比較無法使力,長期下來就可能出現便秘、脹氣、消化不良等問題。
  • 如果皮膚鬆弛不嚴重,但是腹直肌分離比較厲害,可以採用內視鏡腹部整形手術。內視鏡會從恥骨上方利用一個類似剖腹產約10公分的小切口進入,把所有的腹直肌修補起來。內視鏡腹部整形手術的傷口較小,也不用重做肚臍,大約適用於約5%的腹直肌分離患者。如果皮膚鬆弛很嚴重,便得採用開放式腹部整形手術,包括修補腹直肌分離、切除多餘的皮膚、然後再重新做一個新的肚臍。
  • 由於腹部整形手術的範圍較廣,為了降低皮膚壞死的風險,術前一個月都不可以抽菸。接受腹部整形手術後,必須穿著塑身衣一個月。
-----廣告,請繼續往下閱讀-----

AI、電動車可靠度漫長驗證難題怎麼解?智慧即時監控突破三大挑戰

2025-07-30 22:00:00

可靠度測試往往需要漫長的時間驗證,您是否只能依賴外部實驗室提供的數據,靜待結果?在測試過程中,如何能隨時掌握產品的測試數據,縮短決策時間,提升開發效率呢? 

本文轉載自宜特小學堂〈AI、電動車可靠度漫長驗證難題怎麼解?智慧即時監控突破三大挑戰〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

圖 / 宜特科技

本文轉載&增修自宜特小學堂〈AI、電動車可靠度難題怎麼解?智慧即時監控突破三大挑戰〉,對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

當前電子產業發展迅速,特別是在 AI、電動車、高電壓產品等領域,不管在規範和測試設備上,傳統可靠度測試已難以應對快速變遷的技術需求。

規範與挑戰:

隨著市場對創新產品的需求日益增加,企業面臨更短的開發時程壓力。新產品開發週期加速,意味著從設計、試產到量產的時間被大幅壓縮,進而對可靠度驗證提出更高的效率與彈性要求。特別是在許多新興技術尚未建立完整可靠度測試規範的情況下,驗證團隊需自行設計模組與支援機制,以滿足不同情境下的監控與測試需求。

-----廣告,請繼續往下閱讀-----

此外,隨著晶片設計日趨高度整合及客製化,製程及材料可靠度也需要調整測試手法以縮短驗證時程,如何在眾多規格下快速調整參數以因應工程師所提出的驗證手法及對應實驗條件,是現今可靠度驗證產業的一大挑戰。

測試需求:

電壓、電流供電及量測規格的多樣化,需具備不同解析度或是自動化儀控的整合;此外,測試中額外衍生的功能需求,例如脈衝寬度調變(Pulse Width Modulation, 簡稱 PWM)、動態回饋偵測(Dynamic Feedback Detection, DFD)、電源擴充(Power Expansion, PE)等,甚至到軟體的調整因應特殊需求,在可靠度驗證上也日益普遍。若單靠添購標準機台或傳統硬體架構的設備,難以滿足這些需求,如何擴充標準機台功能及快速開發出具彈性化的測試手法,將影響產品的測試完整性以及上市時程。

本文將探討如何透過接案配套管理模式,統一管控測式資訊,並藉此平台,減少工程師與實驗室之間來回溝通的時間,亦降低訊息傳遞的誤差,透過可連線的軟、韌、硬體整合模塊,即時處理線上量測資訊,確保測試準確性與時效性。透過最新智慧即時全球驗證中心,結合智慧監控、即時反饋、全球連線功能,協助工程師打造出高效、準確且可遠端監控的測試系統,提升產品可靠度的驗證品質,並降低第一線的人力需求。

因應AI與電動車發展,半導體業在可靠度測試上面臨三大挑戰

AI 與電動車產品的可靠度測試痛點

高速運算 AI 晶片需要長時間穩定運作,但溫度變化、電壓波動、散熱問題等因素都會影響到效能。而電動車電源管理要求高,在高電壓與快速充放電環境下,如何確保電池模組與控制系統的可靠性是關鍵挑戰。

-----廣告,請繼續往下閱讀-----

高度整合型及特規晶片及製程材料驗證的挑戰

當多個系統模塊整合於單一晶片封裝時,往往會帶來以下的挑戰:功耗變大(熱逸散不佳),啟動程序複雜化、晶片驅動監控一對一進行、特定功能區需要額外監控或做程式驅動、特定腳位需做高解析度量測、或需搭配特定儀器整合進行驗證。這些挑戰都必須搭配設備機台、儀控設施,快速提供工程師可行性評估以及驗證手法。如何在有限時間內提供可行的解決驗證方案,並與工程師達成測試手法的共識,需要有一定程度的設計資源與資料庫。在前期驗證的系統開發上,必須根據測試條件以及測試過程中產生的異常,快速反應並適時介入來調整實驗參數。

現有測試設備及傳統做法的局限

現有測試設備可分成一體式與分離式架構。一體式設備將所有加速條件(如溫度、電壓、監控等)整合在一個標準系統上,並具備一定的規格跟制式化設定,甚至連電路板或治具也有一定的規格限制。而分離式架構則是,透過外部組裝,根據專案需求組合供電系統、爐體、驅動電路與監控儀器,並通過開發軟、韌和硬體進行整合。前者在規格上有較多限制且涉及成本考量,後者則須長時間開發,且時程不易掌控,必須投入大量設計資源評估,規格驗收的不確定性亦高。

此外,可靠度產線多依賴人力去做巡檢紀錄,機台檔案紀錄的傳送也仰賴工程人員寄送跟分析,傳統作法缺乏時效性且耗損人力資源,也無法在測試過程中迅速應對異常。

智慧即時全球可靠度驗證中心解決方案應運而生

為了因應上述挑戰,宜特結合業界資源,於今年第二季推出智慧即時全球可靠度驗證中心(Global Smart Reliability Center)。運用豐富的設計資料庫及模組化設計,將各類測試需求、儀器、操作介面及控制器功能模組化,並開發線上資料庫及接案系統,根據客戶驗證規格流程可行性來進行快速評估,並提供相應的提供解決方案。此外,亦搭配資安架構,開放帳號密碼以提供連線監控,透過即時處理及圖表顯示,並結合生命模型預估,確保實驗參數的正確性及監控異常,可於異常發生的第一時間,通知測試工程師及客戶採取應對措施。

-----廣告,請繼續往下閱讀-----

宜特智慧即時全球可靠度驗證中心已完成測試項目展示實驗室(Demo Room),為元件提供完整的可靠度驗證環境,並適用於晶圓代工、ASIC 設計公司、電動車、高電壓產品等關鍵領域。

圖一:宜特智慧即時全球可靠度驗證中心的解決方案。 圖 / 宜特科技

透過智慧監控、即時反應、全球連線,透過以下方式提升產品可靠度測試效率:

(一) 智慧監控獨立通道(Independent Channel Smart In-situ Monitoring)

實時監測樣品的各項數據,透過數據即時回傳,減少傳統測試方式的延遲問題。並可獨立監測每個測試樣品的電壓、電流、溫度變化,確保測試精準度。

圖二: 實時監測樣品的各項數據並可即時回傳。 圖 / 桓銘科技

(二) 即時反應(Real-time Response)

若測試過程中發生異常(如溫度過高、電流異常),系統會自動停機,防止樣品進一步劣化,確保分析的準確性。

-----廣告,請繼續往下閱讀-----
圖三:即時反應畫面。 圖 / 桓銘科技

(三) 全球連線(Global Connection)

工程師可透過遠端連線即時查看測試進度,提供更便捷的全球測試管理。

圖四:客戶可透過遠端連線即時查看測試進度。 圖 / 桓銘科技

(四) 工程資料分析(Data Analysis)

透過 EDA 分析工具輔助產品在測試中各項參數隨時間變化的關係,清楚掌握產品量產前的工程數據。

圖五:透過 EDA 分析工具,掌握產品量產前的工程數據。 圖 / 易方科技

案例分享

案例一:多通道電源系統的設置與軟體控制機制的增強

工程師們面臨的問題是,由於案件需要處理大量電源組數並紀錄實驗過程中的電源數據,實驗架設過程繁瑣、費時且易出錯。為了解決這些問題,可根據規格需求建置了多通道電源系統,並增強軟體的多樣控制機制、建立符合規格的機台,簡化繁複的架設流程。最終,在架設效率提升了70%的情形下,可獲得更具參考價值的實驗數據,成功打造了一個高效且架設零失誤的實驗室。也可預留機台配置,應對後續各種客製化需求。

-----廣告,請繼續往下閱讀-----
圖六:通過設置多通道電源系統及強化軟體控制,解決繁瑣架設問題,並確保數據準確性。圖 / 宜特科技

案例二:機櫃式的客製設備與自動化數據紀錄

由於先進應用的產品類型繁多,需要準備多種不同儀器規格來應對,且實驗設備過於繁瑣,準備過程複雜。為了解決這些問題,藉由將應用模組和相關儀器組裝成機櫃式標準設備,可減少了每次架設過程中的出錯率。還能根據不同市場需求進行靈活調整,避免重新購買新設備。且所有實驗數據皆可自動化紀錄,並提供電源時序、保護、延遲及警告等多項功能,進一步提升了操作效率與準確性。

圖七:將應用模組和儀器整合成客製化機櫃設備,自動化紀錄數據,可靈活調整設備,降低成本。 圖 / 宜特科技

結語:

在 AI、高速運算(HPC)和電動車等先進應用快速發展的背景下,現行的半導體可靠度測試標準尚未完善,業界迫切需要靈活且高效的測試方案,以確保產品穩定性與市場競爭力。為回應此趨勢,透過智慧監控、即時反應、全球連線,打造出的智慧即時全球可靠度驗證中心,可為元件可靠度測試提供完整的驗證環境,適用於晶圓代工、ASIC 設計公司、電動車、高電壓產品等關鍵領域。有助提升測試資料的透明度與反應速度,降低測試時間與潛在風險,持續推動半導體可靠度驗證技術的發展。

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----

從PD-L1到CD47:癌症免疫療法進入3.5代時代

2025-07-25 17:33:31

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----

無聲殺手潛伏一年才確診?輕鏈型類澱粉沉積症到底多難察覺?

2025-07-18 23:33:52

圖 / 照護線上

「有位中年男性患者最初因嚴重蛋白尿前往腎臟科就診,經腎臟切片確診為輕鏈型類澱粉沉積症後,轉診至血液腫瘤科。」成大醫院內科部血液科李欣學醫師表示,「患者相當配合,積極接受治療,後續也進行自體幹細胞移植以鞏固療效。」

患者的蛋白尿從每天8至9克顯著下降至大約1克,顯示腎臟功能明顯改善。患者的體重、營養狀態逐步恢復,整體生活品質大幅提升。至今已超過六年,腎功能仍維持穩定,疾病控制良好。由此可見早期診斷與積極治療的重要性,讓患者能維持正常生活。

什麼是輕鏈型類澱粉沉積症?

輕鏈型類澱粉沉積症(Light Chain Amyloidosis, AL)是一種與骨髓漿細胞異常增生有關的疾病,較常出現在中老年族群。正常情況下,漿細胞位於骨髓內,負責製造抗體,而當漿細胞出現異常(例如產生基因變異)就可能會異常增生,並持續產生過多輕鏈蛋白質(輕鏈是抗體的片斷),這些異常的輕鏈蛋白質會形成不可溶性的類澱粉纖維,進而沉積於體內各種器官中,影響其功能,甚至可能危及生命。

什麼是輕鏈型類澱粉沉積症?
圖 / 照護線上

類澱粉沉積症症狀多變 早期診斷挑戰高

輕鏈型類澱粉沉積症的症狀與沉積部位有關,常見影響的器官和臨床表現:

-----廣告,請繼續往下閱讀-----
  • 腎臟:受影響時可能出現蛋白尿(泡沫尿)、水腫、腎衰竭
  • 心臟:受影響時可能出現胸痛、呼吸困難、心律不整、心衰竭等。更有可能因為突發的心律不整或心跳停止而造成猝死。
  • 腸胃道:受影響時可能引發腹瀉、消化不良、舌頭腫大等
  • 神經系統:受影響時可能出現手腳麻木、姿態性低血壓、運動或感覺異常等
  • 皮膚:受影響時,可能出現不明原因的瘀斑或影響凝血功能。
輕鏈型類澱粉沉積症恐影響全身器官
圖 / 照護線上

由於輕鏈型類澱粉沉積症的表現多樣且不具特異性,診斷難度較高。許多病患是在其他科別追蹤一段時間後懷疑類澱粉沉積症,進而轉診至血液科檢查治療。李欣學醫師指出,根據研究顯示,患者出現症狀後,常需要經過半年至一年以上的時間,輾轉各科就診才最終確定診斷。由於延誤診治導致器官受損,也會增加治療難度。

臨床上若懷疑類澱粉沉積症,必須透過組織切片確定診斷,例如皮膚切片、腎臟切片、心內膜切片、神經切片等。李欣學醫師說,透過病理檢查確認類澱粉沉積後,還需要進行血液及尿液蛋白電泳分析,確認是否有異常的單株輕鏈蛋白(Light chain monoclonal gammopathy)。此外會進行骨髓檢查,以評估漿細胞是否異常增生。

四合一藥物治療成新標準 早期治療效果好

目前輕鏈型類澱粉沉積症的治療目標,是從源頭減少異常蛋白質的產生,並盡可能恢復受影響器官的功能。李欣學醫師解釋,由於主要致病機制來自骨髓內異常漿細胞的增生,治療策略需針對漿細胞進行控制。

輕鏈型類澱粉沉積症該如何治療
圖 / 照護線上

輕鏈型類澱粉沉積症的治療方式與多發性骨髓瘤(Multiple Myeloma)類似,主要是抑制異常漿細胞,常用藥物包括蛋白酶體抑制劑、免疫調節藥物、類固醇、CD38 單株抗體、化學治療等。美國 NCCN 治療指引建議,輕鏈型類澱粉沉積症患者應在第一線積極使用四合一藥物治療組合。相較於過去的三合一藥物治療組合,四合一藥物治療組合更能有效抑制異常漿細胞,進而提升治療反應與器官功能恢復的機會。

-----廣告,請繼續往下閱讀-----

接受治療後,體內已沉積的類澱粉需要時間才能逐漸被代謝,部分受損的器官功能有機會恢復。然而,若病程已進展至器官長期損傷,即使成功抑制異常漿細胞,器官功能仍可能無法完全復原。因此,及早診斷與治療是提升病患預後的重要關鍵!

筆記重點整理

  • 輕鏈型類澱粉沉積症是一種與漿細胞異常有關的疾病,常見於中老年族群。當漿細胞發生基因突變,異常增生並過度產生輕鏈蛋白質時,這些異常蛋白可能形成不可溶性的類澱粉纖維,沉積於體內各器官,進而影響其功能,嚴重時甚至危及生命。
  • 由於輕鏈型類澱粉沉積症的表現多樣且不具特異性,診斷難度較高。研究顯示,患者出現症狀後,常會經過一、兩年以上才會確定診斷,由於器官受損,也會增加治療難度。
  • 輕鏈型類澱粉沉積症的治療目標是從源頭減少異常蛋白質的產生,並盡可能恢復受影響器官的功能。美國治療指引建議,輕鏈型類澱粉沉積症患者應在第一線積極使用四合一藥物治療組合。相較於過去的三合一藥物治療組合,四合一藥物治療組合更能有效抑制異常漿細胞,進而提升治療反應與器官功能恢復的機會。
-----廣告,請繼續往下閱讀-----

傳統開胸手術太風險?微創支架手術不用開胸也能修補血管

2025-07-16 22:00:00

圖 / 照護線上

「六年前,有位八十多歲的老先生因為突發性劇烈胸痛被送到急診室,檢查發現急性主動脈剝離,於是接受緊急全開胸的胸主動脈置換手術。」林口長庚心臟血管外科主任陳紹緯教授表示,「雖然胸口留下了一道三十公分的傷口,但是也挽回寶貴的生命,如今患者已高齡近九十歲。」

這次住院的原因是患者主動脈弓的血管瘤快速擴大至 6 公分,需要再次手術。陳紹緯教授解釋,傳統的手術方式需要再次打開胸骨三十公分的傷口,搭配體外心肺循環機,在手術過程中須讓心跳停止,並將體溫降至攝氏二十度以保護腦部才能完成手術。過去替代的主動脈支架手術包括煙囪或開窗手術,滲漏風險及手術失敗比例都相當高。

所幸林口長庚心臟血管外科團隊引進新型一體成型胸主動脈分支支架,是近期美國 FDA 核准可臨床應用的胸主動脈分支支架,可在維持患者腦部動脈血流的狀況下,以微創方式處理主動脈弓血管瘤,避免傳統開胸及心臟停止,降低手術風險與恢復時間,為台灣心臟血管外科治療開創嶄新里程碑。

微創胸主動脈分支支架手術不開胸、心臟不停跳
圖 / 照護線上

「病患術後影像顯示支架位置良好,雙側頸動脈血流順暢,主動脈瘤已完全被支架隔絕。」主刀醫師陳紹緯教授表示,「林口長庚醫院是目前台灣少數有能力進行分支支架手術的醫學中心,特別是針對複雜性主動脈弓血管瘤零區病人,手術經驗已領先亞洲一流醫學中心,整個手術過程不需要 30 公分的開胸傷口,僅需經由腹股溝、頸動脈、腋下的小切口,在複合式混成手術房完成,手術時間及出血量都顯著減少。對高齡、高風險病人而言,可顯著降低手術風險。」

-----廣告,請繼續往下閱讀-----

微創胸主動脈分支支架手術 提升成功率、漸少併發症

主動脈是人體最大的血管,長時間承受血流的衝擊。陳紹緯教授說,當主動脈壁老化、發生病變之後,主動脈可能像氣球一般逐漸膨大,形成主動脈瘤(aortic aneurysm)。隨著主動脈瘤逐漸膨大,破裂風險也越來越高。

主動脈瘤的危險因子包括年長、男性、抽菸及家族病史等。陳紹緯教授說,主動脈瘤大多沒有症狀,讓患者毫不自覺,但是當主動脈瘤破裂時,可能導致突發性劇烈胸痛、腹痛,並因為大量內出血而休克,危及性命。

主動脈瘤可能出現在升主動脈、主動脈弓、降主動脈、腹主動脈。由於主動脈弓的構造較複雜,以往大多要採用傳統開胸手術來處理位於主動脈弓的主動脈瘤。陳紹緯教授說,手術過程中必須使用體外心肺循環機,讓心跳停止,並將體溫降至攝氏二十度以保護腦部。

如果要採用主動脈支架手術,便得利用人工血管進行外科繞道手術,或利用小血管支架進行血管內「煙囪支架手術」。陳紹緯教授說,若採外科繞道手術,便需經由額外刀口進行;若採「煙囪支架手術」,則會增加主動脈支架滲漏的風險。

-----廣告,請繼續往下閱讀-----
胸主動脈分支支架手術提升成功率
圖 / 照護線上

新式胸主動脈分支支架具有內建的分支設計,帶來革命性的突破,能夠在維持患者腦部動脈血流的同時,以微創方式治療複雜主動脈弓疾病,避免傳統開胸及心臟停止!陳紹緯教授解釋,在置放主動脈支架後,可利用內建的導絲引導小支架,以維持血流。由於採用一體成型設計的新技術,能夠降低滲漏和移位的風險,且不需額外手術刀口,可顯著縮短手術時間、減少術後疼痛、降低手術風險、減少併發症、縮短恢復期。

陳紹緯教授說,「胸主動脈分支支架手術會在複合式混成手術房進行,這種一站式手術環境,配備先進影像導引系統,可以即時進行 3D 影像重組,利用術中即時的高解析度影像導引,達到精準定位,整體手術成功關鍵在於詳細的術前規劃及團隊成員在手術中的精準操作。」

微創胸主動脈分支支架手術開創治療新紀元
圖 / 照護線上

林口長庚醫院心臟血管外科團隊成功引進胸主動脈分支支架系統,標誌台灣在主動脈疾病治療領域的重大突破。陳紹緯教授表示,這項技術對於解剖結構適合的患者而言,是微創、高效且長期可靠的治療方式,尤其適合外科手術高風險患者,為他們提供了過去難以想像的治療可能性。

微創胸主動脈分支支架手術為複雜主動脈弓病變提供了全新治療選擇,其微創特性大幅降低了患者的手術風險,也代表台灣的心臟血管治療邁入新紀元!

-----廣告,請繼續往下閱讀-----

筆記重點整理

  • 當主動脈壁老化、發生病變之後,主動脈可能像氣球一般逐漸膨大,形成主動脈瘤。危險因子包括年長、男性、抽菸及家族病史等。主動脈瘤大多沒有症狀,讓患者毫不自覺,但是當主動脈瘤破裂時,可能導致突發性劇烈胸痛、腹痛,並因為大量內出血而休克,危及性命。
  • 由於主動脈弓的構造較複雜,以往大多要採用傳統開胸手術來處理位於主動脈弓的主動脈瘤。手術過程中必須使用體外心肺循環機,讓心跳停止,並將體溫降至攝氏二十度以保護腦部。
  • 新式胸主動脈分支支架具有內建的分支設計,帶來革命性的突破。在置放主動脈支架後,可利用內建的導絲引導小支架,以維持血流。由於採用一體成型設計的新技術,能夠降低滲漏和移位的風險,且不需額外手術刀口,可顯著縮短手術時間、減少術後疼痛、降低手術風險、減少併發症、縮短恢復期。
  • 微創胸主動脈分支支架手術是微創、高效且長期可靠的治療方式,為複雜主動脈弓病變提供了全新選擇。尤其適合外科手術高風險患者,為他們提供了過去難以想像的治療可能性。
-----廣告,請繼續往下閱讀-----

量子電腦的計算是怎麼一回事?

2025-07-15 10:00:00

-----廣告,請繼續往下閱讀-----
  • 作者 / 賴昭正 前清大化學系教授、系主任、所長,IBM 研究顧問化學家;合創科學月刊

因為我們確信量子系統一般無法在傳統電腦上有效模擬,量子運算未來最重要的應用可能是量子系統的電腦模擬。——David Deutsch「量子計算之父」

量子革命啟航,2025 年迎來國際量子年。圖 / unsplash

量子物理學誕生於 1900 年初期,源自普朗克(Max Planck)及愛因斯坦(Albert Einstein)等人為了解釋古典物理學無法解釋的黑體輻射和光電效應,提出能量「量化」的奇怪觀念。1920 年代,玻爾(Niels Bohr)、薛定諤 (Erwin Schrödinger)、海森堡( Werner Heisenberg)、玻恩(Max Born)和狄拉克(Paul Dirac)等物理學家為量子力學建立了更完整的數學框架,從而形成了微觀世界的物理理論。最近由於以它為基礎的計算技術不斷有「突破」性的進展,聯合國便迫不及待宣布 2025 年為國際量子科學技術
年。

筆者在芝加哥大學攻讀的是量子化學,博士班資格考試選的是物理化學、無機化學、及物理系的物理數學,論文用的理論工具是「量子」物理,實驗工具是「計算機」,因此應該是位「量子計算機」專家了,但慚愧的是:儘管市面上已經出現許多有關量子計算機的報導,但筆者除了知道其所用的物理原理(參看「延伸閱讀」)外,卻完全不知所云!

查了一下台灣兩大科普雜誌,發現《科學月刊》與《泛科學》都沒報導過!顯然這不是一篇容易寫的科普文章。但因其重要性,及對科普的喜好,在猛 K 一個月後,筆者謹在此先野人獻曝,報導點心得,望能拋磚引玉將來有專家為我們寫一篇更詳細及深入的介紹。在進入本文之前,得預先警告:筆者深深了解數學公式會嚇跑讀者,但是幾經考慮後,覺得不用點數學顯然不能點出量子計算機的骨髓。對數學不感興趣的讀者事實上不需要深入了解:只要從那些數學中看出量子計算機的運算不是確定性的「加減乘除」、而是操縱或然率的「量子物質狀態」改變(「量子位元」一節)即可。如果真的不想看到數學公式,可以跳過「量子閘」及「量子計算機」二節。

量子計算機的起源

20 世紀 80 年代初,美國阿貢國家實驗室(Argonne National Laboratory)貝尼奧夫(Paul Benioff)發表四篇量子計算基礎的開創性論文,證明計算機可以按照量子力學定律運行;費曼(Richard Feynman)獨立提出了量子計算的想法,認為基於量子原理的計算機可以高效地模擬量子系統,克服對於一般電腦來說難度呈指數級增長的計算任務。1985 年牛津大學物理學家德意志(David Deutsch)以費曼和貝尼奧夫的思想為基礎,提出了通用量子計算的概念,並設計出一個適用於量子計算機的演算法。

-----廣告,請繼續往下閱讀-----

要了解這些量子計算想法之前,我們得先了解一下現行的(傳統)計算機。

傳統計算機

人類因為有 10 個指頭,所以採用十位元的運算方法,即 0,1,…9;9 再加 1 就進位成 10(借用別人的手指)。當初設計計算機的人也許因為只有兩根手指的關係,卻採用「二位元」(bit)的運算方法,即 0 與 1;1 再加 1 就進位成 10(= 十位元的 2)。事實上這樣的計算法在電路設計上是比較容易的:接近 0 伏特的電壓(通常稱為「低」)表示邏輯 0,而較高的電壓(通常稱為「高」)表示邏輯 1。計算機就是靠這樣的線路及所謂「邏輯閘」(logic gate)來達成計算的任務,如圖一:2 個「二位元」數 A2A1 及 B2B1 相加的計算機線路圖。

圖 / 作者提供

「邏輯閘」的目的是將輸入(input)依照所設計的邏輯改成單一的輸出(output)。例如將(0,1)輸入「AND 閘」,圖一的邏輯表告訴我們它將輸出 0;(1,1)將輸出 1,…。又如將(0,1)輸入「XOR 閘」,它將輸出 1;(1,1)將輸出 0,…。讀者應該不難用圖一的線路計算出 10+11=101(O3O2O1);10+01=011;11+11=110;…。

如果要增加「二位元」的數目[如 3 個「二位元」、4 個「二位元」…,或 8 個「二位元」的「位元組」(byte)],只要重複複製圖一 a 及 a′ 之間的線路,將它連在最後一個 a′ 上即可。所以(傳統)計算機的設計是透過「邏輯閘」操縱「二位元」來達到計算的目的。

-----廣告,請繼續往下閱讀-----

所以要使用傳統計算機來「解決問題」如微積分方程式或製定更好投資策略時,必須先將它們「改寫成」加減乘除及簡單邏輯(如 x 則 y)的「運算問題」。

量子位元

量子計算機也是採用「二位元」的運作,但其「二位元」非常不同於上面所提到之「二位元」:

(1)它的 0 與 1 不是電壓的不同,而是物質狀態的不同,稱為 |0> 與 |1>;

(2)它可以有同時存在於 |0> 與 |1> 的「量子疊加」狀態(quantum superposition state,註一),例如 |x>=α|0>+β|1>(|α|2+|β|2=1);

-----廣告,請繼續往下閱讀-----

(3)當你去測量時,因「波函數坍縮」(wave function collapse)只能得到或然率分別為 |α|2 及 |β|2 的 |0>或 |1> 狀態而已,不能有中間的混合態!

這樣的「二位元」因為具有量子物理的特性,因此稱之為「量子位元」(qubit)。原子的自旋(spin)就是具有這樣的特性,因此可作為量子計算機的「量子位元」。

等一等,電壓不是也可以模擬(1)及(2)嗎?例如 0 代表 0 伏特電壓,1 代表 5 伏特電壓,那麼 0.8(4伏特電壓)不是代表由 80% 的 5 伏特電壓和 20% 的 0 伏特電壓組成的嗎?原則上不錯,但就出現了一個實際設計上的問題:電壓一定要很穩定(註二)。這事實上正也是量子計算機設計上的最大挑戰之一:如何保持「量子位元」的穩定?設計高品質的「量子位元」極具挑戰性:如果「量子位元」與其環境沒有充分隔離,它就會遭受「量子退相干擾」(quantum decoherence),在計算中引入雜訊、錯誤、或崩潰。當然,電壓是沒辦法模擬(3)的:如果允許「疊加」態,測量電壓只能得到「疊加」電壓 4 伏特,不可能量到 0 伏特或 5 伏特。但事實上更嚴重的問題是:電壓沒辦法模仿兩個「量子位元」的「量子糾纏」(quantum entanglement)態:

χ>=12(00>+11>)

這狀態是由兩個「量子位元」組成的,而每個「量子位元」是由兩個狀態組成,因此理論上應該共有四個狀態(00, 01, 10, 11)才對;但上式中卻缺少了 |01> 及 |10> 兩個狀態!

-----廣告,請繼續往下閱讀-----

量子(邏輯)

量子計算機的設計與傳統計算機類似,不同的是它用「量子邏輯閘」(quantum logic gate)來操縱「量子位元」。在量子電路模型中,「量子邏輯閘」(或簡稱「量子閘」)是在某些量子位元上運行的基本量子電路,它們是量子電路的組成部分,就像傳統邏輯閘是傳統數位電路的組成部分一樣。在介紹「量子閘」之前,因為「量子位元」可以同時存在於 |0> 與 |1> 之間的狀態,因此用向量(vector)及矩陣(matrix)來表示將比較方便。例如以 |0> 及 |1> 為基底向量(basis vector,可以想成傳統上的 XY 座標軸),「量子位元」|0>、|1>、|x>=α|0>+β|1>將分別為:

如果用向量來表示量子位元,那麼「量子閘」將是一矩陣。

傳統計算機中的「NOT 閘」將 1 改成 0 輸出、0 改成 1 輸出,量子計算機中也有類似的「NOT 量子閘」能將 |0> 改成 |1> 輸出、|1> 改成 |0> 輸出、上面的 |x> 改成:

1α2+β2[βα]

輸出。

-----廣告,請繼續往下閱讀-----

「阿達瑪閘」(Hadamard gate) 是一基本量子閘,它能將量子位元從單一的確定狀態(|0⟩ 或 |1⟩)轉換為測量任一結果均為 50% 機率的量子疊加態(參見圖二)。「CNOT 閘」是一雙量子位元操作閘:

[1000010000010010]

作用於 H|0> 及另一 |0> 結合的雙量子位元可以得到一量子糾纏態,其電路圖為

圖 / 作者提供

量子計算機

在結論前讓我們在此以一實際的例子來說明量子計算機可能提供的優勢。為了避免難懂的數學,我們在這裡只能用一最簡單的、不實用、但在開發量子演算法技術上佔有很重要歷史地位的例子:1985 年「量子計算之父」所提出的德意志演算法。德意志演算法用量子計算機解決了一個簡單的問題:給一只能輸入 0 或 1、只能傳回 0 或 1 的函數 f(x),我們如何知道 f(0) 是否等於 f(1)?

圖 / 作者提供

圖三告訴我們如果用傳統的計算機,我們必須用 0 及 1 分別詢問這個函數兩次才可能得到答案:0 表示 f(0)=f(1);1 表示 f(0)≠f(1)。但因為量子位元可以有疊加狀態,我們可以先透過「阿達瑪閘」將 |0> 轉變成 |0> 及 |1> 疊加態後再詢問

-----廣告,請繼續往下閱讀-----
Qf:[(1)f(0)00(1)f(1)]

得到答案後再透過一次「阿達瑪閘」,我們就可以測量結果:如果測得 |0> 則表示 f(0)=f(1); 測得 |1> 則表示 f(0)≠f(1)。有興趣的讀者不妨親自演算一下,驗證筆者沒有算錯(註三)。

德意志演算法利用了量子力學的疊加性及波函數的干涉性,成功地只詢問一次就得到了答案,所以我們可以在這裡吹噓:量子計算機只要用傳統計算機一半的時間就可以解決問題。事實上 Lov Grover 1996 年提出一個搜尋(註四)演算法證明了:當傳統計算機需要使用 ~N 次詢問才能得到答案,量子計算卻只要使用 次求值,就能以高機率找到產生特定輸出值之黑盒函數的唯一輸入(註五):也就是說如果傳統計算機需要 100 年,量子計算機只需要 10 年!所以量子計算機將全面改變我們的…(請讀者填空)。但這不是好像看到一隻黑烏鴉,就說全世界烏鴉都是黑的一樣嗎?

結論

希望在瞰完本文後,讀者對量子計算機有初步的了解,不再只是個空洞的名詞而已。像其它新興科技一樣,我們將時常看到充滿著樂觀、承諾、與「突破」的報導,如去年底谷歌(Google)宣稱「(新的量子晶片)在不到五分鐘的時間內完成了一個「標準基準計算」(standard benchmark computation),而當今最快的超級電腦則需要 1025 年―這個數字遠遠超過了宇宙的年齡」,及最近微軟(Microsoft)發布了全球首款採用拓撲核心架構的量子晶片,謂創建了更穩定、可擴展的量子位元,「有望」讓量子計算機「更接近」解決複雜問題。

但我們都知道量子物理已經有百年的歷史,這知識為我們創造了空前的社會繁榮,因此我們不免要問:以它為基礎的量子計算機科技,為什麼經過了 40 年還是只停留在完成「標準基準計算」、「有望」、更接近」、…等等「空談」的階段,交不出一張實用的成績單(註六)?…什麼時候它才能真正為我們解決一有「突破」就被提到的複雜問題,如增強網路安全,徹底改變材料科學、新藥、和醫學的研發,優化財務模型、製定更好的投資策略等等承諾?

-----廣告,請繼續往下閱讀-----

量子計算之父德意志說:「因為我們確信量子系統一般無法在傳統電腦上有效模擬,量子運算未來最重要的應用可能是量子系統的電腦模擬。」諾貝爾物理獎得主費曼也持相同的看法。現在報章雜誌的報導都是渉及量子計算機所面臨的硬件設計挑戰;但翻閱證明其可行性的演算法後,筆者覺得如何將上面所提到之巨觀世界的實用問題,「改寫成」能利用量子運算獨特功能來解決之微觀世界的量子系統,可能才是一項更重大千萬倍的挑戰!

圖 / US National Weather Service

這使筆者想起了核融發電的問題。第一顆使用核子分裂的原子彈於 1945 年 8 月在日本廣島爆炸,6 年後年美國愛達荷州的實驗增殖反應器用核分裂產生可用電力,又三年後蘇聯的奧布寧斯克核電廠將核能所產生的電連結到電網。1952 年 11 月 1 日美國在馬紹爾群島引爆了第一顆氫彈。氫同位素核融反應除了比核分裂釋放更多的能量外,不會產生有害的長期放射性廢物;加上氫或氘在自然界中既便宜又豐富,為一種長期、可持續、經濟和安全的發電能源燃料,因此核融發電成為 1950 年代後期全世界先進國家追求的目標;報張雜誌三不五時便有「突破」的報導;但 1960 年到現在,65 年過去了,我們還是「祇聞樓梯響,不見人下來」,甭說看不到一座實用的核融發電廠,能勉強收支平衡的實驗就算是「突破」了。筆者認為量子計算機很可能將步其後塵:雷聲大雨點小、或根本不下雨(註七)!

註解:

  • (註一)許多科普文章多用「丟擲硬幣來比喻」,謂在空中旋轉之硬幣就是同時存在於正、反兩面的狀態。這顯然完全不懂量子物理:在空中旋轉之硬幣從來沒有同時存在於兩種狀態,它只是很快地在兩種狀態中轉來轉去而已!
  • (註二)正是因為要避免這一問題,所以傳統計算機設計採用「有」與「沒有」的二元電壓。不只如此,早期的計算機為了偵測錯誤,8 位元的位元組還多加了一位冗餘位元(詳閱「錯誤訊息的偵測與修正」,科學月刊 2009 年 3 月號或《我愛科學》)。
  • (註三)先謝了。但請注意:筆者忽略了要求或然率等於 1 的常數如 1/2。
  • (註四)在未以任何特定方式排序或組織的N項資料庫中尋找特定項目。
  • (註五)因為傳統計算機每次只能問一項,所以大約要問 N 次才能得到答案;量子計算機可以「疊加」態一次詢問所有的項目,但因天下沒有白吃的飯,所以每次詢問只能得到或然率的答案,需要重複詢問 ~N 才能將或然率提高到相當肯定的地步。
  • (註六)寫到這裡筆者突然了解為什麼一直對量子計算機「突破」的報導不感興趣:一則沒有新理論,再則好像全是空談,沒有解決實際問題的內容。
  • (註七)2023 年 5 月,領導微軟量子運算工作的副總裁、「技術院士」 Matthias Troyer 在《ACM 通訊》上撰寫了一篇題為「擺脫炒作與實用性:切實實現量子優勢」(Disentangling Hype from Practicality: On Realistically Achieving Quantum Advantage)的論文,指出量子電腦能夠提供有意義優勢的應用數量比某些人認為的要有限;謂量子電腦只有在解決小數據問題時才能真正發揮其指數級加速的作用。他補充說:「其餘的都是美麗的理論,但不會付諸實踐」。

延伸閱讀:

-----廣告,請繼續往下閱讀-----