2025-10-28 13:42:45

數十年來,肝癌一直都是台灣重要的癌症死因,對國人健康造成重大威脅。嘉義長庚醫院胃腸肝膽科張德生主任指出,由於肝癌早期沒有明顯症狀,必須透過檢查才能夠發現,所以許多患者會在較嚴重時才確定診斷。根據 111 年癌症登記報告,約有三成患者在確診肝癌時已為晚期,大多無法接受手術,僅能以藥物治療為主。晚期肝癌患者若沒有接受適當治療,病程進展可能相當迅速。

在過去沒有特別治療的時代,晚期肝癌患者通常很難存活超過一年。如果肝硬化的狀況較嚴重,存活期甚至可能小於半年。張德生醫師表示,近年來晚期肝癌的治療藥物持續進展,顯著提升治療成效。如果積極接受正規治療,存活期中位數有機會達到兩年半。
晚期肝癌需要採用全身性治療,例如標靶治療、免疫治療等。張德生醫師說,標靶治療是針對特定靶點發揮作用,抑制腫瘤生長。免疫治療是利用免疫檢查點抑制劑,讓受到抑制的免疫細胞重新發揮作用。根據美國癌症治療指引,晚期肝癌一線建議藥物分別為口服標靶藥物及免疫治療,目前這兩類藥物皆已納入健保給付。然而,健保給付的標靶治療與免疫治療是互斥的,也就是說,一旦選擇某一種藥物,健保僅給付該藥物,無法在治療過程中更換另一種藥物。
張德生醫師補充說明,由於只能擇一使用,因此病人在選擇治療方式前,需與醫師充分討論,審慎考量自身病情、身體狀況及治療目標,選擇適合的藥物。而目前標靶藥物、免疫藥物的給付條件略有不同;免疫治療在健保初次使用與續用上,需符合一定審核標準,若病情未顯著改善,續用申請有可能不被核准;而口服標靶藥物在健保申請條件上相對具彈性,臨床上亦常見很多符合條件的晚期肝癌病人,得以穩定使用多年。

「根據臨床經驗,標靶藥物若有效,通常能在短時間內產生反應,可能很快就能看到療效。」張德生醫師說,「對於腫瘤較大、病情進展迅速的晚期肝癌患者而言,標靶治療可望迅速發揮作用,避免病情惡化。」
對此,張德生醫師也分享一個印象深刻的案例,指出曾經遇過一位 85 歲的老先生,確診肝癌時,因腫瘤已經非常巨大,嚴重影響身體機能,導致活動能力大幅下降而必須坐輪椅才能來到門診看診。張德生表示,考量到病情狀況,希望盡快用藥並縮小腫瘤,因此與患者討論後,決定選擇接受口服標靶藥物治療。而令人印象深刻的是,經過一週的治療後,老先生在回診時竟然是自行走進診間,與初診時的狀況相比,有非常顯著的改善。
對此,張德生醫師補充說明,以個人經驗來看,口服標靶藥物的申請流程相對快速,約一至兩週即可完成審核,也因此在臨床與患者討論用藥時,也會將時間一併評估。除了用藥時間外,治療對生活的影響,也是一項須考量的因素。張德生醫師指出,標靶藥物採用口服,病人可在家自行服用,每日一到兩次,便利性高,對生活與工作的影響較小。而免疫治療採靜脈注射,病人必須定期回醫院接受治療。這些,也是臨床上在與患者討論用藥時,可能會評估的面向,也提醒病人積極與自己的主治醫師討論,找尋最適合自己的用藥。

最後,張德生醫師也提醒,近年來肝癌的治療藥物已有長足進步,提醒高風險族群,如:具有 B 型肝炎、C 型肝炎、肝硬化、飲酒過量、脂肪肝、家族病史等危險因子等,應定期回診,檢測胎兒蛋白 AFP、追蹤腹部超音波。即使確診為晚期肝癌,也不必過度灰心,請與醫療團隊積極配合,根據個人臨床狀況制定合適的治療方案,便有機會獲得良好的治療成效。
2025-10-25 13:24:01
本文轉載自宜特小學堂〈工程師該補強這 4 招,AEC-Q006 銅線封裝驗證流程大升級〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!
車用 IC 銅線封裝驗證流程大升級,長達 18 頁的AEC-Q006 改版條文太燒腦?別擔心,本篇懶人包讓你畫重點。無論你是設計、材料、製程、封裝、測試工程師、可靠度主管,還是驗證負責人,快速掌握新版 AEC-Q006 四大關鍵變更
在半導體封裝流程中,「打線鍵合」(Wire Bonding)是晶片和導線架(Lead Frame)進行電氣連接的主要技術,而打線材料的主角,以金與銅為大宗。隨著金價節節高升,低成本又具備高導電性的「銅線」逐漸崛起,適用於高密度與高功率的優勢,讓銅線技術廣泛應用於車用IC與車用功率模組中。
然而,銅線本身易於氧化,故在製程中須特別控制鍵合環境與表面潔淨度,以確保鍵合品質穩定。 此外,鍵合處在高溫、高濕度與熱機械應力條件下的長期可靠性亦為關鍵,銅線鍵合界面易產生劣化、微結構變異與疲勞失效,進而影響模組的電氣穩定性,所以需要透過加速壽命測試與材料選擇,確保其符合車規應用之耐久性與安全性要求。
因此,AEC 在 2025 年六月底推出了 AEC-Q006 重大改版(Rev. B 版),不僅強化了對銅線材料與製程變更的驗證要求,也全面更新實驗與分析項目,提升可靠度評估的嚴謹度。根據宜特觀察,市場已開始行動,多家車用晶片已著手進行銅線製程的升級驗證。這場驗證升級戰,你準備好了嗎?
AEC-Q系列有六大家族成員,分別是 AEC-Q100(IC 晶片)、AEC-Q101(離散元件)、AEC-Q102(離散光電元件)、AEC-Q103(微機電系統)、AEC-Q104(MCM 多晶片模組)以及 AEC-Q200(被動元件)。這次要關注的雖非上述六大家族成員,卻是車用IC導入銅線技術的關鍵驗證標準 AEC-Q006。
AEC是於1990年由克萊思勒、福特汽車、通用汽車組成的組織,目的是要建立通用的汽車零件可靠度測試方法與品質系統標準。此協會全球僅93家為合格會員,皆是全球在汽車各領域翹楚,包括全球前10大的 Tier1 供應商 APTIV、BOSCH、CONTINENTAL、DENSO、MAGNA、ZF等,以及前10大的車用晶片 Tier 2 供應商 INFINEON、INTEL、NVIDIA、NXP、QUALCOMM、STM、TI等,而 Tier 3 供應商(也就是協助 Tier 2 的服務公司)則包含 TSMC、UMC、GF、Amkor 皆為其成員。
宜特於2022年底正式成為AEC會員。自 2015 年發表以來,AEC-Q006 陪伴產業走過十年歷程,成功讓銅線從早期的風險材料,轉變為汽車先進互連的可靠選項。隨著數百次驗證及低故障率數據支持,AEC-Q006 大幅強化了車用 IC 對銅線技術的信心。2025 年 6 月底上路的 AEC-Q006 Rev. B 版本,從過去十年大量驗證經驗的積累,進一步優化銅線驗證流程,讓元件在「更操、更嚴苛」的環境下也能確保穩健性裕度,同時驗證條文更清楚易懂,幫助工程師順利上手。
本期的宜特小學堂要來聊聊最新上路的 AEC-Q006 Rev. B 改版重點!別小看這次更新,它不只是條文微調,而是針對銅線封裝的可靠度驗證大升級 —— 從驗證流程、測試門檻到祖父條款的界定,全面強化可靠度評估的深度與一致性。想知道工程師們未來會多出哪些工作?改版又會對整體設計驗證流程帶來什麼衝擊?本文幫你整理 AEC-Q006 Rev. B 的四大變更重點,掌握新版規範背後的真正意圖。
一、重新定義「祖父條款」適用條件
在車用IC可靠度驗證標準持續演進的背景下,祖父條款(Grandfather Clause)扮演著平衡技術創新與既有產品穩定性的關鍵角色。AEC-Q006 Rev. B版本對祖父條款重新表述,明確界定其適用邊界,避免濫用或誤解。允許某些既有產品在符合特定條件下,可豁免重新驗證,但不得適用於不同技術家族的新產品。例如:若供應商在AEC-Q006發布前已完成銅線技術系列的車用驗證,並具備穩健性與可靠度證據,且生產過程無相關問題,即可免除重新驗證程序。
二、明確界定「需重新驗證」的變更類型
根據AEC-Q006標準,當元件設計、製程或材料發生變更,且可能影響銅線互連可靠度時,就必須重新評估是否需執行相關測試項目。以下列出常見需關注的變更類型但不限於:
這些變更若未經評估,可能導致鍵合不良、壽命縮短或故障模式改變。因此在設計變更或製程轉移階段,應主動啟動變更評估流程,並依據 AEC-Q006 測試項目進行驗證。
三、技術系列驗證更完整,提升一致性、減少不必要重工
為提升「不同廠、不同製程條件的銅線封裝產品」的可靠度一致性,與技術家族資格認定驗證效率,這次改版著重鍵合點(Stitch)驗證、導入批次驗證機制,提升製程穩定性、差異驗證流程適度簡化,以兼顧效率與風險控管。
四、資格驗證流程大翻修!測得更準、也更有效率
這次 AEC-Q006 Rev. B 針對整體銅線封裝的驗證測試流程做了一次大升級。調整測試計畫,擴充物理分析項目並明確界定封裝材料與熱機械失效風險,強化測試嚴謹度。抓出「高應力環境下鍵合處可能出現的異常」,同時讓工程師執行起來更具彈性並提升驗證效率。
測試驗證流程由 17 項應力試驗與物理分析項目(表一)所構成,依序執行以全面評估。可透過以下流程圖(圖一),快速掌握各項測試順序與對應分析手法。


根據表一,如果元件已經順利通過第 13 項的 ATE 測試,則第 14 到第 17 項的分析性測試可選擇性執行,不是硬性規定。不過AEC協會還是建議供應商應視實際狀況評估,必要時仍需要進一步分析,確認產品的可靠度和製程穩定性。
這些分析性測試(像是物理分析、結構分析、失效模式評估等),主要是協助識別影響可靠性性能的潛在邊際性風險。至於是否要執行、怎麼執行,應該由供應商根據每個案件自行判斷,並訂出相應的技術標準與決策依據。
至於要準備多少測試樣品?就要看你選哪一種驗證方案來決定。第 8 至第 11 項的測試樣本數,可以作為第 14 至第 17 項的參考依據。

Q1:AEC-Q006 是什麼?和 AEC-Q100 有什麼不同?
A:AEC-Q006 是針對車用 IC 使用銅線封裝技術的專屬驗證規範,補充在 AEC-Q100 之外。它特別強調銅線的可靠度與風險評估,確保即使在車用環境下(高溫、高濕、震動)仍具備長期穩定性。
Q2:這次 AEC-Q006 Rev. B 改版的主要目的與重點是什麼?
A:本次改版是在大量實務驗證經驗上調整流程,提升驗證效率、強化穩定性與可理解度,主要四大變更包括:祖父條款定義更清楚,避免濫用;變更條件更明確,哪些材料/製程變更必須重新驗證;技術系列驗證強化,新增批次與鍵合點驗證;測試計畫更新,取消部分冗測並導入新驗證邏輯。
Q3:如果我公司產品之前就完成過銅線車用驗證,還要重新做嗎?
A:不一定。如果你的產品在 AEC-Q006 正式發表前就通過銅線封裝驗證,且生產過程無異常,可適用祖父條款免除重驗。但若有變更(如材料、線徑、封裝架構),仍需重新評估是否要驗證。
Q4:哪些變更會觸發重新驗證?
A:常見需要重新驗證的變更包含但不限於:鍍層材料或焊盤結構改變、銅線規格(如線徑或合金)不同、封裝廠變更或製程異動、使用不同導線架或 Mold 模塑料、鍵合方式改變(Ball/Wedge Bond)。
Q5:新版本增加哪些測試?又取消了哪些?
A:取消了 Power Temperature Cycling(PTC)測試,因其對銅線架構元件的應力有限。新增了以「1 倍應力 vs 2 倍應力」分流的彈性驗證方案,提升效率;物理分析項目也更完整,幫助發現潛在問題。
Q6:「一倍應力」和「兩倍應力」驗證是什麼意思?
A:簡單來說,「一倍應力」模擬實際產品壽命需求;「兩倍應力」則是為了提高安全係數的加嚴測試。工程團隊可依需求選擇,但都需通過ATE測試確認功能可靠。
Q7:現在技術系列驗證是否變更?是不是更麻煩?
A:驗證要求變得更完整但也更有彈性,如晶粒尺寸在合理範圍內可簡化測試批次(TCT 做 1 lot 即可),若導入 Copied Exactly 線,也有明確四批次驗證機制。
Q8:這次修訂對工程師有什麼影響?
A:必須更清楚了解製程/材料變動的驗證條件、測試項目與樣品準備須更細緻、對物理分析與失效模式評估要求提高,需更多跨部門配合(如FA團隊)。
Q9:宜特在這次 AEC-Q006 改版中扮演什麼角色?
A:宜特(iST)是亞洲首間 AEC 協會會員實驗室,不只是使用規範,更參與規範的討論與制定,能第一時間掌握改版重點並協助客戶規劃最佳驗證策略。
這次 AEC-Q006 的修訂,不只呼應銅線逐漸取代金線的趨勢,也針對車用電子在極端環境下的可靠度驗證機制再升級。從宜特這幾年觀察到的驗證需求來看,現在有越來越多車用 IC 開始導入或完成銅線封裝的可靠度測試,代表市場接受度正在提升。不過銅線本身的風險依然存在,還是得嚴格把關,才能確保長期穩定、安全無虞。
宜特科技作為 AEC 協會亞洲首家認可的實驗室會員,不只使用規範,亦參與 AEC 規範的制定,我們將持續關注車電驗證趨勢與國際規範演進,協助業界更快掌握實務重點,降低導入風險、提升驗證效率。若您喜歡這類產業解讀內容,歡迎追蹤宜特科技臉書,掌握第一手科技新知!
2025-10-22 10:31:57
本文轉載自顯微觀點
喜極而泣的淚水、悲傷難過滴下淚水,眼淚表現著人當下的情緒;不僅如此,眼淚更是保護眼睛、避免角膜受傷的關鍵要素。
但你可曾想過,微觀的眼淚長成什麼樣子?科學藝術家透過顯微鏡觀察眼淚,發現人的眼淚居然有著和雪花相似的晶體,且每一滴淚的結晶樣貌都獨一無二,可說是獨特的藝術品。

蘿絲‧林‧費雪(Rose-Lynn Fisher)是一位常駐洛杉磯的美國攝影師,曾用掃描式電子顯微鏡(SEM)的視角捕捉蜜蜂的微觀結構,並以《蜜蜂》(Bee)的照片集聞名。
2008 年費雪因痛失至親,經常落淚。因此有天她突發奇想,如果將眼淚放在顯微鏡下拍攝是什麼樣子?她看到眼淚水分蒸發後呈現結晶排列,如同地球的地形一樣,簡直就像「情感領域的鳥瞰圖」。因此她陸續蒐集 100 份眼淚樣本進行顯微攝影,出版了攝影集《眼淚的地形學》(The Topography of Tears)。
無獨有偶,遠在荷蘭海牙的攝影師莫里斯‧麥克斯(Maurice Mikkers) 也正從事眼淚的顯微攝影,在他的顯微視角下,眼淚結晶則像雪花一般。
莫里斯開始拍攝顯微鏡下的眼淚,始因於 2015 年某天,他重重地踢到桌腳不禁落淚的經驗。
當時莫里斯正在研究雙氯芬酸(Diclofenac),一種非類固醇抗發炎藥的結晶。當他拿著結晶幻燈片從廚房走回辦公室時,腳趾大力地撞到桌子,落淚的那一刻,他腦中想著:「我要拿微量吸管捕捉臉頰上滾落的淚水。」
他將蒐集到的眼淚滴在顯微鏡玻片上,並且透過顯微鏡看見淚水呈現美麗的結晶樣貌。
莫里斯原本也不知道必須使用什麼樣的顯微技術才能「看見」眼淚,一開始嘗試了明視野和偏光照明的方式,雖然都有非常漂亮的結果,但他仍覺得「缺少些什麼」。爾後,他使用了暗視野照明方式。
「我驚呆了!眼淚在黑暗的背景上,形狀就像一個小星球,星球地貌呈現出美麗的圖案和形狀,感覺就像是一顆『眼淚行星』」,莫里斯這麼說道。
莫里斯也試著探究為何眼淚在顯微鏡下呈現的結晶樣貌各有不同。不過,雖然推測受淚液的組成影響,其中包含水、脂質、葡萄糖、粘蛋白、乳鐵蛋白、淚蛋白、免疫球蛋白、尿素、鈉、鉀、氯、錳和溶菌酶等;甚至情緒性的眼淚還包含催乳素、促腎上腺皮質激素。
此外,莫里斯透過親友和計畫募集三種類型的淚水。第一種是用於潤滑的「基礎型淚水」(basal),透過看著電扇、通風器等,睜眼 60 秒以上且不眨眼的方式蒐集;第二種是因為吃辣椒、切洋蔥等導致流淚的「反射型淚水」(reflex);第三種則是因為快樂、悲傷痛苦而留下的「情緒型淚水」(emotional)。
但莫里斯發現,儘管是同一種類型的淚水,在顯微鏡下仍然呈現不同的圖像。「它們都是獨一無二的」,莫里斯說,因不是在完全受控的環境形成,眼淚的溼度和溫度不同,也可能讓有完全相同化學成分的兩滴眼淚在顯微鏡下看起來非常不同。

2025-10-21 16:56:00
本文與 BOSCH 博世家電 合作,泛科學企劃執行
你也是個不愛洗碗、不喜歡碰水、碰油污的懶人嗎?
每次吃完飯,光是想到要把碗盤疊一疊端去水槽,好心情就先打了個折。油膩膩的鍋子、黏住的飯粒、髒掉的湯匙……這些小麻煩足以讓人懷疑,自己是不是該多存點錢買台洗碗機?
不過,洗碗機可不只是幫懶人解放雙手的「自動打工仔」。打開它,你其實是在啟動一台縮小版的科學實驗室:「流體力學」幫忙把水柱打到每個死角、「材料科學」讓「石頭」吸濕再吐出熱能、能源工程則在後台幫你精打細算電費。
這些聽起來有點專業的名詞,最後都回到三個簡單問題:碗洗得乾不乾淨?能不能馬上乾爽收起來?花多少電?

使用洗碗機最讓人無奈的情境,莫過於滿心期待地打開,卻發現放在角落的那幾個碗盤,上面還掛著惱人的飯粒或醬漬。明明放在中間的餐具都潔淨如新,為何洗碗機的邊緣角落總是成為水流的法外之地?
科學家透過精密的粒子追蹤實驗,給出了一個物理限制:洗碗機噴射臂的水柱,其實都是「直線前進」的。換句話說,水本身不會自動轉彎,這讓「零死角沖洗」變成了一道難解的幾何學考題。
一次完美的洗淨,必須滿足兩大物理條件:足夠強勁的「力道」以及「零死角的沖洗」。
傳統的「一字形」噴射臂在旋轉時,只能掃描出一個圓形區域,結果就是洗碗機的方形腔體有四個角落,成為水流難以有效觸及的「幾何學死角」。

為了解決這個問題,傳統設計常採用「斜角噴嘴」,試圖將水流送往角落。但研究證實,這種斜角噴嘴會導致水流的「力道」在擊中餐具時嚴重耗損,造成更高的能源消耗與噪音 。
因此,工程師們面臨一個設計上的兩難:是否存在一種設計,能夠在不犧牲「力道」的前提下,從根本上解決「零死角沖洗」這個難纏的幾何困境?
既然無法改變「水柱是直線的」這個物理現實,那就改變「發射平台」本身的幾何設計。Bosch 所提出的 S 型流線噴水臂,也就是「 360° 水龍捲極勁渦流」技術,便是在這個思路下誕生,其核心優勢在於:

換句話說,這不是單純「水壓加大」的暴力解,而是把流體力學與幾何設計揉在一起的聰明解方。
第二個痛點:為何洗碗機總是烘不乾塑膠餐具?
在各大洗碗機使用者社群中,總流傳著一個共同的謎題:「為什麼陶瓷、玻璃碗盤都乾了,但塑膠餐具或保鮮盒卻總是掛著惱人的水珠?」尤其在台灣這種潮濕環境,碗盤常常像剛洗完澡一樣,水珠掛在上頭,不僅收不了櫃,還容易悶出霉味。
這個現象背後的科學原理,與材料的「熱容量 (Thermal Mass)」有直接關係,也就是一件物體「儲存總熱量」的能力。
我們可以用一個國中物理就學過的熱量公式來理解:熱量 (H) = 質量 (m) × 比熱 (S) × 溫度變化 (ΔT)。
因此,真正的問題不在洗碗機,而在於塑膠材質本身「低熱容量」這個無法改變的物理天性。
那麼,面對塑膠這個難纏的對手,我們是否就無計可施了?如果無法依賴餐具的「內在餘溫」,我們是否能提供一種強大的「外在能量」來逆轉困局?
既然無法改變塑膠餐具「無法儲存足夠總熱量」的內在天性,唯一的出路,就是提供一個強大的「外在熱源」,主動烘乾。
Bosch 的工程師們從材料科學中找到了答案:一種會「呼吸」的天然礦石—沸石 (Zeolite)。
沸石之所以能解決這個難題,是因為它獨特的物理化學特性,能主動為塑膠餐具提供它最欠缺的「外部熱能」。整個過程分為三步:

這就是為什麼有人說,沸石能讓碗盤乾得「比沙漠還乾」。但最讓人驚豔的,並不是它的乾燥能力,而是 Bosch 的工程師如何讓這顆魔法石頭,不像一般乾燥劑那樣用完就丟,可以永續循環。
要重複利用沸石,需要高溫才能「再生」,但誰規定一定要為此額外耗費能源?Bosch 的工程師們靈光一閃:「等等,我們的洗碗機在每次洗滌時,本來就要用加熱器把冷水燒熱,這股強大的熱能,配合適當的密閉空間,不就是現成的烤箱嗎?」
於是,這個絕妙的設計誕生了:在下一次洗程加熱時,「順便」將吸飽濕氣的沸石徹底烘乾還原,而沸石釋放出的水氣,正好直接混入洗滌的髒水中一起排出。根據實測,沸石乾燥能比傳統方式省下約 20% 的電力!更重要的是,省下的不只是錢,也是相對應的二氧化碳排放。
*根據博西家電內部實驗室測試結果:沸石洗碗機每次使用耗費約0.76瓦,非沸石洗碗機每次使用耗費約0.98瓦。

洗碗機聽起來只是幫懶人偷懶的家電,但細看背後,其實是一座縮小版的實驗室:流體力學解決清潔死角,材料科學讓石頭學會「吸水吐熱」,能源工程則幫你算好電費與碳排。
換個角度想,每一次啟動洗碗機,不只是省下一雙泡在油水裡的手,也同時把高深的科學應用,轉化成日常的乾淨、省電與環保。
下次當你選購洗碗機時, 不妨也從科學家的角度,向它提出兩個關鍵問題:

- 全球銷售第一Bosch洗碗機!
極致水龍捲 x沙漠極乾燥
洗得乾淨,乾得徹底
碗盤永遠保持無痕晶亮的潔淨全球獨家沸石科技,吸濕放熱密閉烘乾
360°水龍捲,全面洗淨死角縫隙
75°C高溫水流,S型流線消滅細菌
176件餐具大容量,家庭聚會輕鬆解決
- Bosch洗碗機
洗淨乾燥殺菌,一次搞定https://lihi.cc/idYWT
2025-10-19 15:20:22

「有位七十歲患有糖尿病的男性患者,他第一次接受透析是因為高血鉀症且全身無力。」大雅長安診所院長呂國樑醫師表示,「後續,患者開始長期在診所接受血液透析,每週三次。但是,在非透析日還是常常出現全身無力或心跳過慢的情況,而需緊急送醫。急診的檢查結果顯示血鉀偏高,然而患者對陽離子交換樹脂的治療接受度較差,導致高血鉀問題反覆出現。」
在接受血液透析的患者中,死亡風險會隨著血鉀濃度上升而提高,且經常反覆發生,復發間隔會越來越短。「已經接受洗腎的患者,仍有可能出現高血鉀。」呂國樑醫師說,「因為洗腎患者的腎功能喪失,需依賴血液透析或腸道排出鉀離子。可是在透析後,細胞中的鉀離子可能進入血液中,如果飲食中又攝取較多鉀離子,便容易出現高血鉀,尤其在非透析日,鉀離子會持續累積。」

口服陽離子交換樹脂可以吸附腸道中的鉀離子,阻止其被人體吸收,不過可能造成便秘、潰瘍等腸胃副作用,而且因為顆粒粗、口感常被認為類似沙子,導致患者服用意願較低。晶體鉀離子結合劑的專一性高,對鉀離子的結合能力遠高於鈣離子或鎂離子,因此療效較佳且副作用較低,適用於慢性腎臟病患者、心衰竭患者,以及長期接受血液透析的患者。不僅能快速降低鉀離子濃度,且有良好的耐受性。醫師會根據患者的狀況調整劑量,請遵照主治醫師指示服藥。

一般成年人血液中的鉀離子濃度介於 3.5 至 5.5 mEq/L,當鉀離子濃度偏高時,稱為高血鉀症(Hyperkalemia)。呂國樑醫師指出,鉀離子是維持神經傳導與肌肉收縮的重要離子,血液中的鉀離子大部分由腎臟透過尿液排出,少部分由腸道排出。若是腎功能正常,血液中的鉀離子濃度可維持在正常範圍內,但是腎功能不佳的患者,若食用到高鉀食物,例如菠菜、香蕉等,便容易出現高血鉀的狀況。
鉀離子濃度過高或時高時低可能出現多種症狀,包括噁心想吐、腹瀉、手腳麻木、肌肉無力等,嚴重可能導致心律不整,甚至心跳停止、猝死。
高血鉀的治療策略包括實行低鉀飲食、調整藥物、口服晶體鉀離子結合劑或陽離子交換樹脂等。「有患者會抱怨低鉀飲食影響食慾,導致心情低落。」呂國樑醫師說,「家屬在得知有晶體鉀離子結合劑能幫助降低血鉀、減少飲食限制後,便決定開始使用,讓患者的胃口變好,精神也有了改善。」「腎素-血管張力素-醛固酮系統抑制劑」(RAASi)常用於控制血壓、保護腎臟和心臟,但是可能導致鉀離子留存在體內,而需要調整藥物。

洗腎患者在採用低鉀飲食時,要注意營養均衡,可以吃米飯、蛋、豆、魚肉等,要避免乳製品、香蕉等高鉀食物。呂國樑醫師提醒,請務必依照指示服藥,並持續監測血鉀濃度。降血鉀藥物的進步,不但讓高血鉀患者在治療上有多種選擇,也有助於提升其治療成效與服藥意願,降低高血鉀的風險且兼顧生活品質!
洗腎患者的高血鉀雖不一定會隨時有症狀,不易留意但卻是不可忽視的重要危險因子,最嚴重可能造成心跳停止與死亡,若有任何疑慮請務必與主治醫師討論相關治療建議。
2025-10-17 09:00:00
本文轉載自電業文物典藏網
編按:濁水溪流域內水力發電設施眾多,這些發電設施從屬於不同的水力發電體系。若按照建設時序,將這些設施切分開來單獨檢視,難免見樹不見林。因此,本文的前半部分,著重介紹濁水溪流域三個水力發電體系的建設歷程。其一,為戰前的日月潭水力發電系統。其二,為戰後的明湖、明潭抽蓄水力發電系統(兩者各自獨立,但以日月潭水庫為中心相疊合)。其三,為最初與電力產業沒有特別關聯的嘉南大圳濁幹線濁水水力發電所。後半部分則以流域路徑走讀方式,從下游往上游前進,並選取途中的重要標的設施進行導覽。
為了幫助讀者理解日月潭周邊水力發電系統的複雜性,本文製作了濁水溪流域水力發電體系圖,標示出三個獨立的水力發電系統,希望幫助讀者從較廣遠的歷史視角出發,認識濁水溪流域內各水力發電系統的形成脈絡。
位於臺灣中部的濁水溪為全臺最長的河川,其豐沛的水資源,自古以來即是兩岸居民賴以為生的重要命(水)脈。到了日治時期,河川水資源的利用不再侷限於傳統的農業水利灌溉,藉由水量與水位落差轉換為電能的近代水力發電系統始由殖民政府引入臺灣,並以臺北近郊的新店溪流域作為水力發電工程的試行場域,興建了龜山、小粗坑水力發電廠,爾後又陸續加入新龜山與烏來水力發電廠,最終形成以新店溪流域為核心的水力發電系統群。另一方面,臺灣總督府也在自身推動興建的農田水利灌溉設施當中,選擇了中、南部三條水位落差較大的灌溉圳路興建竹仔門、后里與土壟灣水力發電廠,逐步建立並擴大臺灣的水力發電體系。
不過,前述的水力發電廠都屬於小規模、川流式的水力發電設施。到了1920、30年代,隨著水資源利用方式的轉變以及大壩技術的發展,以大規模水庫(群)系統為核心,統合運用、控制整條河川流域水力資源的電業發展思潮,逐漸成為當時的國際主流。而臺灣第一個依此模式規劃並實現的,便是濁水溪流域的日月潭水力發電建設工程,其在臺灣的近代電業發展史中具有劃時代的意義與價值。如今,這個以日月潭水庫為核心,利用濁水溪流域水資源的大規模系統性水力發電設施,自完工起算已超過九十年,依然完整保存並持續運作,不僅是臺灣電力發展歷程的重要見證,也為當前臺灣的電力事業做出相當貢獻。
這些留存至今、依然系統性串連運作的「活的電力產業文化資產」,亦正好組構、串接成為一完整的「電業文化路徑」。因此,筆者期望透過本文帶領讀者分別從電業系統(文化路徑)形成的歷史發展脈絡,並且實地沿著濁水溪流域,自下而上循著各個可及的系統性建築、構造物設施所構成的「產業文化路徑」兩種視角,一起來「走讀」由日月潭水力發電系統設施為核心的濁水溪電業文化路徑。
① 從天然湖泊到人工水庫的水力發電計畫
日治初期,臺灣總督府於全臺各地興建多座水力發電設施,讓臺灣的電力使用日漸普及。隨著民生與產業用電需求增加,並考量將來各種建設的持續擴展,殖民政府於1916年起展開全臺水力發電資源開發調查,發現濁水溪流域上游豐沛的水資源極具水力發電價值。3年後,一個以日月潭為核心,並利用濁水溪為發電水源的大規模離槽水庫式水力發電興建計畫被規畫完成。
該計畫將原本的高山天然湖泊日月潭修建為可蓄存大量發電用水的人工水庫,透過總長超過15公里的導水路,穿越重山峻嶺將濁水溪上游溪水引入日月潭蓄水,再以水壓隧道與壓力鋼管,將水引流而下至濁水溪支流水里溪河谷的日月潭第一發電所(今大觀發電廠),利用其高水位落差發電。高達10萬瓩(kW)的發電量足可供應當時全臺用電需求外,還可餘留大量備載電力供額外使用。

② 台電的前身──臺灣電力株式會社的設立
由於該發電建設計畫規模與經費過於龐大,臺灣總督府一改過去由官方投入資金主導工程興建與經營的想法,改採政府與民間共同集資入股、成立半官半民營的「臺灣電力株式會社」,主導日月潭水力發電工程的實施,以及完工後的電力事業經營。此後,這個具官方主導色彩的電力會社,成為臺灣電力事業建設與經營發展的主角。戰後,繼承臺灣電力會社的「台灣電力公司」,亦屬國家政策導向的國營企業,肩負臺灣的電力事業發展與經營,直到今日。
③ 工程建設的頓挫與再興
日月潭水力發電建設工程於1919年開工後不久,即受到第一次世界大戰影響導致工程費暴增,加上濁水溪水源的高含沙量、日月潭水社壩的複拱型水壩設計可能發生的技術安全問題、以及關東大震災等影響,不得不於1926年中止施工。
停工後,臺灣電力株式會社邀請美國Stone&Webster公司的工程專家來臺評估並提供工程可行性建議,隨後聘請專精事業經營的松木幹一郎任新社長、以及具水力發電泥沙防治經驗的新井榮吉擔任建設部長。同時,重新修改財務規劃,包含將取水口位置改至武界之工程設計修正後,於1931年重啟建設,最終於1934年完工運作,為當時亞洲規模第一、世界第七大的水力發電設施。
④ 日月潭水力發電系統設施體系的成形
根據日月潭水力發電系統的整體計畫,自濁水溪上游導水至日月潭蓄水,再向下引流至第一發電所發電的第一期工程完成後,尚規劃興建兩座發電廠。其一是利用第一發電所發電後尾水,由導水路引至更下游的日月潭第二發電所(今明潭發電廠鉅工分廠),其二是利用第二發電所尾水發電的第三發電所(最終並未興建)。同時亦規劃在武界取水口往濁水溪更上游的霧社興建霧社水庫,除與日月潭共同調配濁水溪流域的水資源,也透過導水路引水供霧社第一、二發電所與萬大發電所發電使用。可謂以日月潭與霧社水庫兩水庫為核心,利用濁水溪流域的水力資源串聯形成系統性水力發電設施群的規劃。

可惜該後續計畫除第二發電所與萬大發電所分別於1937年及1943年完工運作外,霧社水庫工程因太平洋戰爭日趨激烈而被迫中止。直到戰後,台灣電力公司在美國墾務局協助下於1957年重新完成霧社水庫的建設。至此,以日月潭與霧社水庫為中心的濁水溪流域水力發電系統設施體系終於完整成形。
⑤ 日月潭成為雙重「心臟」:明湖、明潭抽蓄水力發電廠
到了1970年代,為解決臺灣日益遽增的日間尖峰用電負載問題,台灣電力公司接受德國與瑞士顧問公司建議,於1981至1985年間,進行以日月潭為核心的明湖抽蓄水力發電建設。該計畫以日月潭作為發電水源調整池(上池),將日間發電後儲存於水里溪下游明湖水庫(下池)的尾水,利用夜間多餘電力抽回日月潭中待下次發電使用。
之後,台灣電力公司再於1987至1995年間進行亞洲最大、世界第四的明潭抽蓄水力發電工程。這一建設計畫以日月潭為上池、明潭水庫為下池。該計畫以日月潭為「心臟」,分別串聯戰前的日月潭、霧社水力發電系統,以及戰後的明湖與明潭抽蓄水力發電系統,構成一雙重、立體疊合的水力發電體系,亦可謂臺灣電力文化資產在繼承與開創的基礎上可持續性運作的最佳典範。

⑥ 濁水溪中下游的平地水力發電廠:濁水(烏塗)發電廠
另一方面,與日月潭水力發電建設同步進行、並稱日治中後期全臺兩大水利建設計畫的嘉南大圳水利灌溉工程,雖位處南臺灣,卻與中部的濁水溪流域有著密切關連。以臺南曾文溪為主要水源的嘉南大圳烏山頭水庫,僅足夠供應臺南與嘉義的灌溉用水。因此,為確保位於嘉南大圳灌溉區內的雲林也能獲得足夠的水資源,該計畫的設計者八田與一遂將目光轉向濁水溪水資源,於濁水溪中下游左岸的雲林林內設置濁幹線取水口,擷取濁水溪水灌溉雲林地區。
除此之外,為能提供遠在臺南的烏山頭水庫施工機械用電力,尚在嘉南大圳濁幹線林內取水口導水路上興建「濁水水力發電所」。其發電方式與一般川流式水力發電所利用地勢水位落差、以壓力鋼管之水力帶動水輪機的方法不同。位於中下游平原區的濁水發電所利用導水路的低水位落差,直接以豎井之水力帶動橫軸水輪機發電,為全臺唯一的平地川流式水力發電所。相較於濁水溪上游的日月潭水力發電工程,濁水水力發電所不論建設目的、運作體系與歷史脈絡都不盡相同,但也因為該電廠的完成,建構了濁水溪流域由下游到上游的完整水力發電系統群。
在「走讀」由歷史發展歷程、脈絡以及流域整體的水力發電運作體系所形成、建構的濁水溪電業文化路徑後,讓我們換個方式,透過地圖、沿著濁水溪流域由下而上,依序實地探訪系統性串聯、組構成的濁水溪水力發電體系之各主要建築物、構造物設施。
事實上,一個體系化之水力發電系統群的形成(構成)與整體河川流域的水資源運用密不可分。其系統性的運作方式通常於河川流域上游設置水資源取水、導水與蓄水(水庫)等「水資源設施」,並在其下游處(相對海拔較低處)設置「水力發電設施(群)」(發電廠),利用水位落差進行發電,發電後的尾水又供更下游的發電廠發電,流域水力資源的持續循環利用,建構了以河川流域為核心的完整水力發電系統群,也形成了以河川流域為中心的電業文化路徑。濁水溪電業文化路徑亦是如此,因此接下來跟著筆者的腳步以溯源的方式,由濁水溪中下游的「水力發電設施(群)」,一路上溯至發電體系源頭的「水資源設施」。

■水力發電廠設施(群)
① 烏塗電廠──新舊並存的水力電廠
沿著濁水溪左岸至流域下游與中游分界點的雲林縣林內鄉烏塗村,靠近農水署雲林管理處農田水利文物陳列館與嘉南大圳濁幹線八卦池不遠處,即可看見一座單面斜屋頂造型的紅色建築物。這是於1922年建成、原作為嘉南大圳烏山頭水庫大壩施工機械用電的烏塗水力發電廠(舊稱濁水水力發電所)。該電廠建築在設計之初為順應濁幹線導水路堤防,並與其共構,才會有此造型特殊的斜面屋頂設計。磚造結構的建物,整體外觀兼具歷史與現代主義的折衷樣式,特別是下半部帶有古典風格的拱型長窗,以及上半部具早期現代主義幾何造型的圓窗,讓強調功能性設計的電廠建築顯現出獨特趣味。其內部設置的三臺水力發電機組則是日本京都奧村電機製作的產品。
烏塗電廠在嘉南大圳完工後轉讓予臺灣電力會社,戰後由台電公司繼承,並改供斗六糖廠製糖產業用電。1999年,921震災造成廠房內外多處裂縫,雖經修補,但古舊建築的耐震度已出現疑慮。2004年,該電廠被雲林縣政府指定為縣定古蹟後,隔年便停止運轉除役,未來擬修復活化為水力發電博物館。與此同時,台灣電力公司於2003年起在烏塗電廠左側另建仿舊電廠建築意象的新電廠,並利用原有發電所的前池(水壓槽)與沉砂池設備,以集集攔河堰南幹渠的水源取水發電。如此新舊發電廠並存的方式,不僅繼續維持水力發電與農業灌溉的水資源運用外,也保存了具歷史、技術價值與意義的電力文化資產。同時也成為一個展現水利文化資產系統性、整體性、脈絡性與永續性價值的範例。



② 鉅工電廠與明潭水庫(明潭發電廠)
離開烏塗電廠後,繼續沿著濁水溪流域往中、上游河谷前行,經過南投縣的集集小鎮後便抵達水里。從集集線水里車站向濁水溪對岸望去,便可看到黃褐色外觀的長方體建築,其後還有從山頂冒出的兩根醒目長條型大水管,一路貼著山坡向下延伸至建物身後。這棟背後連著兩條綠色大水管的建築就是日月潭第二發電所(即鉅工電廠前身)。該電廠利用身後的兩根巨型水管將第一發電所發電後排出的尾水,經銃櫃壩蓄水調整後透過高低落差引入廠內的發電機組發電,發電後的尾水再排入濁水溪支流水里溪中。
鉅工電廠建築於二戰末期,曾因美軍大規模空襲而遭受嚴重破壞。戰後,台灣電力公司將之修復,才恢復昔日樣貌。1946年10月,當時的總統蔣中正偕夫人蔣宋美齡女士前來視察日月潭水力發電系統設施的復原狀況,該電廠由蔣宋美齡女士親題「鉅工」,從而由戰前的第二發電所改為今日所稱之鉅工電廠。當時作為第二發電所調整池的鋼筋混凝土拱重力壩──銃櫃壩施工時,需要製冰設備冷卻混凝土,1937年銃櫃壩完工後,便將此冷卻設備轉為生產枝仔冰,作為職工福利的一部分,並且逐漸成為有名的台電「二坪枝仔冰」。
由鉅工電廠循著水里溪溯源而上,便抵達林業製材聚落──車埕。來到此地,大家的關注焦點應該都是車埕老街,以及由舊大雪山林業公司製材工廠修復活化的車埕木業展示館吧!不過,在參觀的同時,大家很難忽略矗立在展示館旁舊儲木池前方有如混凝土巨牆的龐然大物。這座龐然大物即為明潭水庫的下池壩,而水壩旁隱身在山壁內部的便是排名世界前十大的明潭抽蓄水力發電廠。該電廠是將山壁挖空,利用其內部空間設置的地下電廠,故從外觀無法窺見其全貌。當白天用電尖峰時,便自海拔較高的日月潭引水至海拔較低的明潭發電廠發電,並將發電後尾水匯入明潭水庫儲存,等到夜間用電量較小時,再利用夜間剩餘電力將明潭水庫的水抽回日月潭繼續循環利用發電,這就是抽蓄發電的原理。也因此,大家可能會發現為什麼有時候白天和晚上的日月潭水位落差如此之大,就是因為電廠正在進行抽蓄發電呢!



③ 大觀發電廠與明湖水庫(大觀二廠)
從車埕繼續沿著濁水溪流域支流水里溪而上,就可抵達前身為日月潭第一發電所的大觀電廠。該電廠可謂戰前日月潭水力發電系統的核心發電設施,日月潭儲蓄的湖水便是經由其主建築背後連著的五根巨大鋼管引流自電廠內發電,瓩最大可產生10萬(kW)的電力,當時可供應全臺所需電力外還綽綽有餘。不過,該電廠和前述的鉅工電廠相同,在二戰末期遭到美軍大規模的空襲而損壞嚴重,戰後經台電公司積極修復後才終於恢復昔日樣貌,並在1946年10月由前來視察的總統蔣中正改命名為「大觀發電廠」。完工已逾九十年的今日,大觀電廠與鉅工電廠依舊持續運作,共同肩負起臺灣電力供給的使命。
而在大觀電廠右側不遠處聳立的巨大鋼筋混凝土大壩則是明湖水庫,水庫旁山壁內部便是明湖抽蓄水力發電廠(現稱大觀二廠)。和前述的明潭電廠一樣,明湖電廠也是設置於挖空山體內部的地下抽蓄式水力電廠,而且還是全臺抽蓄式水力電廠的始祖。當初委由德國與瑞士的顧問公司協助規劃設計,並由榮工處負責工程施工。由於明湖電廠的成功經驗,讓臺灣得以在此基礎上接續完成當時亞洲規模最大的明潭抽蓄水力發電廠。



■發電水庫(水資源)設施
④ 日月潭的地標──水社壩與工程殉難紀念碑
自明湖水庫沿著131縣道經過南投縣魚池鄉後便進入知名的日月潭風景區。順著臺21線往右,映入眼簾的是設立在湖岸、刻有日月潭三個大字的石碑。石碑後盡是開闊的湖面與設有木棧道的斜坡草地,為一覽日月潭湖光山色的最佳地點。不過,大家所站立的這片視野絕佳之斜坡草地,其實是人為築造的土石壩體──水社壩。原本該處為日月潭水源向外溢流的水社溪谷,當時臺灣電力株式會社為利用日月潭作為蓄留更多發電用水資源的水庫,遂規劃於此興建水社壩,以便提高日月潭的水位,儲蓄更多引自濁水溪上游的水源。
事實上,原先水社壩採用1920年代流行於美國西部的RC重力式複拱壩型式設計,但後來因工程技術與耐震問題而放棄,改採用土石壩興建而成為今日所見與大地、自然調和的景觀樣貌。在水社壩底端一側,尚有當時承包日月潭水力發電工程的「鐵道工業株式會社」,為紀念從1931年日月潭水力發電工程開工到1934年完工期間,因故殉職的臺籍職工而設立之「殉難碑」。透過紀念碑後刻記的多位殉職人員姓名與詳細資訊,讓人遙想當年建設工程之浩大與艱辛。


⑤ 鷹眼天井奇景之謎──溢流井
在水社壩一側、日月潭碑石附近的湖岸邊,可以看到一座突出於湖水中的奇特圓塔狀構造物。事實上該構造物從上空俯瞰空拍而呈現有如鷹眼天井的謎樣奇景,還曾被各大新聞媒體報導一番。其實這座造型奇特的謎樣構造物是日月潭的溢流井,當日月潭水位過高時,為了不讓湖水越過水社壩頂而恐造成水壩潰決崩塌,便須透過溢流井將過多的水排除。我們可以試想有如一個洗臉盆(或洗手槽),當洗臉盆的水位過高時可透過上方的溢流孔將水排除以避免盆內的水溢流,日月潭的溢流井就猶如洗臉盆的溢流孔功能,是保護日月潭水庫安全不可或缺的重要角色。


⑥ 引濁水溪水入日月潭的關鍵──武界壩
最後則是遠離日月潭,上溯濁水溪流域上游的仁愛鄉武界部落,從部落隔著濁水溪對岸往上不遠處,即是戰前日月潭水力發電建設的重要設施──武界壩。由於最初的日月潭為一水位不深的天然湖泊,其水量不足以供給水力發電用水之需,因此當時的臺灣電力株式會社便計畫於濁水溪上游興建一座攔水壩,利用濁水溪上游豐沛的水資源,將溪水透過導水隧道穿越重山峻嶺後引入日月潭蓄存足夠的發電水量。原先選定的地點為姊妹之原,爾後因考量濁水溪含沙量高,該處河道地形空間不足以長時間容納泥沙的沉澱量,最終改以武界作為水壩的建設地點。
武界壩興建當時,負責現場工程的鹿島組(今日本鹿島建設公司)為克服崎嶇地形限制導致水壩結構混凝土灌漿施工的難題,負責的工程師便發揮創意,在武界壩所在兩側峽谷壁上架設吊橋,利用吊橋與懸吊在其上的輸送管線將已預拌好之混凝土運送到指定位置,從上沿著輸送管澆灌至下面壩體之預定位置,如此作法大大增加施工的效率,使武界壩能順利興建完成。時至今日,武界壩仍然堅守攔蓄濁水溪上游水資源,並將溪水引入日月潭的重責大任!



電業文物典藏網現正舉辦「知識有電讚」電業文物測驗活動中!只要閱讀指定文章內容,完成測驗拿到滿分,就有機會獲得「台電造型製冰盒」!
知識有
讚!電業文物測驗 2025 第四彈
現正開跑中:https://forms.gle/zcT1Sizn5ihMoAeZ8
第四彈活動期限倒數中
即日起至 2025.10.31 止

台灣電力公司基於歷史傳承責任與永續經營理念,期待透過爬梳臺灣電力產業發展脈絡為社會注入多元內涵。
「電業文物典藏」分享台灣電力公司清查與保存的成果,我們期待以兼具知識與趣味的調性,轉譯電業文化資產相關故事,讓大眾得以多元視角看待電力產業發展歷史,也讓臺灣電業發展的故事可以繼續地流傳下去。