2024-12-31 21:22:28
异星工厂的品质扩展包给游戏带来了新的生产规划挑战,比起像以前只能横向扩张工厂的规模,现在可以通过使用高品质的工厂和插件,大幅增加产量。为了最大化如传奇品质的高品质物品的生产,我们需要对高品质产率的计算和规划进行一些分析。
一般来说生产高品质的物品有两种方法,生产出目标物品然后慢慢回收提升质量,或者是直接从源头生产高品质的原料,然后直接生产高品质的物品。
这里先初步的设计了两个蓝图,一个是用于电星蓝图的高品质原料生产,通过读取当前物流网络的信号,自动的将多余物品拿去回收,不断的生产高品质的原料。对于原料级别的物品(如铁板、铜板),比起直接放入回收机拿到同样的物品,将其放入到组装机里生产更高级别的物品,然后再回收回来,可以获得更高的品质。
例如下图里的:
Fig. 1. 回收原料生产高品质物品的例子.
这个蓝图设计成完全全自动的模式,能自动进行负载均衡,回收多余的物品。
回收机+组装机3:
1 |
0eNrVV1tv2zYU/i98XKnWki+NDWy/Ym+pIcgykxCRKJei3BmBAGdrkHZIU2xNt16yBtmwre2wG9AWa9LAP2aVpTztL+xQkmXZlmunAzYM8ANN8nzn9p1zqC3UsjzS4ZQJ1NhCbeKanHYEdRhqoPPDfvTD9tvT/eD1IDg6Ot+5Ex68DH96GA2eDPe/D0++DU8Gwa3fwtvPhi+3w7MvwtPD4OcH0Ysfr7FrLDi7N7z9LPj9fvjo5vDrV0H/4V9v9hLE8/6jaLAbHjxNIb7cC08HsEhwh7/effvH8+DO/WDnM5Cd0f04Ot6Ldp8Hnz+NXhxFZ2fBN7vR8fGf/U8RRtR0mIsaq1vIpevMsKRPzLAJOMOJ2TMtwpEP11ibfIIaqo8LLhquS+yWRdm6YhvmBmVEKeeENL+JEWGCCkoSVfGfns48uwXwDRVnSKagXaJ0uNOlbcIVc4O4AqzsOC5NQryFAFFZWblcxagHouXq5aovrZrC1MaYnIoNmwhqKqZjtygzhMOLMCs5RIzaFPxPzlUAgzAJ7lh6i2wYXQoAIDVG1uG4HaO58mCNclfoM3HqGBwWAvwqyfC4REpJUVcYkk0KBMLpEG6kbPoArHQ80fEWYflFESjjmUTOOl1XU6drky5DLKggdpIu2s4pvu4ZFqhRbKftWUTR4kQnV+Em0ynrgiEO7yWi438ACX6am6hRktYWnqhzT7S5J2W/6cNvNgCVLAAtz9pUKHMJF4VRyNGpNp38SgFyNUMeJW8Btcb4V2P8Ija5iUZ3ch3HMKk9DLyywIHp3QJG4FGaYJ853AbqSKW2vCNNbKAP4w1P0i4NelKrGIleR8J1KRdeLJfiJxRUPr4geKlUguw0Cylau3CR1ksTcfzXinTRtXzZXlm2bPGEDToj4obDN2PjOIGaE9wjGK1zQgB2zbBcMm3QrEx8LROSCMXd4Sp+Z/cu4HBtqkYg8rQz6ZOKRtt6AUX+9w1lZfmGUrlYQ6nnevV1D2beu2ZfeQq7iPUm5aZHhQ5BJbqzpuf4CR1jdJoVhE6Y0bIy/sTZje3Qs5YzpynJWM36o5Yyh9rAh3iULzV7ly7rFHaqpvP/Vpct8YnW9RGSr5WkfOe8iyZHb3FnU8d92fVaQKzYmwLHtWz+FqG8xytG+68b5ML54b//KwdScwM8kolZ1bCKwadyE8OyjIFycllNdtV4qeEa1tIVZEQua/I8uVrDFVyPN2FDlRfUJijIdCbpT92BlpV5Ejx+Mjx4BY/44N627GvtedNXyQIqfVo8NWMOpApTDuDRooHkKJ024vzBraD/BuXk8oaGpzej73aGhyfwMTD86vWsreo/sbWZ9GnZDrMvIowso0UsqfuXvvwiia0ECy5ltsCdLgQ3VlStafVKvV6tatVaWVN9/29ridSk |
回收机:
1 |
0eNrFVt1u2zYUfhdeDlRnyVYSC1ifonepIcgS0xCRJZei3BmBAGdbkXZIW3RNsP6kDTJgW3/QrgPaYksa+GFWWfLVXmGHlCz/yXFbFJh9c8TD8/GcjzwfuY2abkjajHocGdvIIYHNaJtT30MGGh720t92Ppzejv/ux0dHw+u3kv23yYsHaf/J4PavyckvyUk/vvE6ufls8HYnObubnB7GL++nb36/7F324rN7g5vP4j8Pkoc/DH5+F/ce/Pt+L0Mc9h6m/d1k/2kO8dNectoHI8Md/HHnw1/P41sH8fXvIXZu7Ufp8V66+zz+8Wn65ig9O4sf76bHx//0vkMYUdv3AmSsb6OAXvEsV9TkWS0CxTBid22XMBTBNM8h3yJDjXDJRItRvtkinNqK7bea1LO4PxmlRQ2MiMcppyRbS350TS9sNQHfUHEBZXPaIUqb+R3qEKbYmyTgkGbbD2jG8TYCREVb1S/oGHXBVPXKBT0Sic2gavj8BMtQa5OYGDkUSMhmqAAHXHHmu2aTbFodChAQN8Y2we1IvEA4NigLuDlHVttiYHCorSIoCoiIWjrNbxNm5Yfsa8jcD3k7XI4+mYPpEX7NZ1syOUYcZHAWEoyuMEIAdsNyAzKb0HyMnFYECYQoKiO/+hnka/8T+aIFuCX6WVGnqf7qY6ku5aBWcDBaYRkDlelDXV50kLESTNvQVaMmFfvuQmKzoyWJY3Q1tFxIGsY9n7WgQrFoS8wRSRroGzkQCnZk9496GiPebQu4DmU8lHE5fsaUcunTwPUK/KIG/Muo1PGcKpXxt1awN31+YCcoJ62cEGdiF/MMlZbvhC5RNClb2VRRq0m9DqTis27OZfEFkLCl9hYyKhktJR51oUdb6KkKBholFKwUFDRDd0uhXkAYX8DDWBxr9dleqpVgr07QezUEyT1Xemuz6GWn1KbMDik3gVhi+hvmRFvBURx5i641iWc13UJhADTPxCzO8oLTLviar2itqMghdnaVnN961YWELRKfHHhGeSa/1j9WiKaa4iIS92UmOwuu5mntKW+Z+mcosPrJJHzp62+pqERfUqHVyniBsAkdKFFLmFmpj5VF7M41YEbszbqGVbyGqw0MFtgVrEmzhlelVQV3XbqruJpPrMkxVVpFyBoMgqk2ALzIO9v9nJI8ZzwyDCQlc0zR4OD1cPfO8P6NuPceiWLzQNC7Yk786Mlg/x28P+N7O+L15yy6D5RiNwUHy3VcsiKEU+hT8UDGyLWaBPYEJa964oEqlx8cnoCnA/VJeH1Fq9fqdV3X9JWqpkbRf5i4IY0= |
另外一种模式是通过将低级的产物不断回收,不断循环直到生产出高品质的物品,如下所示。
Fig. 1. 回收产物生产高品质物品的例子.
回收机+组装机3:
1 |
0eNrtXN1u68YRfhdeFquA+ytSQPsSuTwwBFpa28ShSIWknLoHBpoALdCLtBdBi1wmFwVaNEFboEVQoK9jJ32Lzu5KpGST4g5VnZzUB77wLrkzOzM78+3sD/UmuMw2el2meR3M3gTposirYPbqTVCl13mSmWd5stLBLEiqSq8uszS/nqySxU2a6wkP7kmQ5kv982BG70kH0VVS1ZO6TPJqXZT15FJn9R4N66Qp9eJukelyryE/bFjfrU3DjzZJltZ3AdlRZvpa58ukvNsjFfcXJNB5ndapdprZyt0836wuoZMZJceEJcG6qIC2yE3HRhT5gSTBXTBT9AN5b+R6wo+N5RcCPxIsU9DfvRcd3HnD3YxUneT1ZFGsLtM8qYuyg/t0X1piiOqyyOaX+ia5TYECmlWuv+qwDIbajSwJrtKs1uXTp1tB1kkJBXg/CUGA3aDMgrwoVzBeptOVaWMEnAU/tQ82xt3o/QX8ddlQILVUZ9Ry62y3aVlvrDpbyZw7Tj7E6cx6dZZIv5mi/EYhuSsU9+kh92oN5gBTdvCNm5F6wnVnftNw2J5AXGzq9aaeA3QVpWuc6SuDLs+ki5C6R/26d/vWIi0Xm7SelzpZzm+SfDk3rUAK8KW63GjStNg9d01XxVIbl+iQOW5kvtxkrydpXumy06KCDuARDQ/V34Bnl9cluOOyxwAiPAynQwNs4yHNwfpd1qYtMlS11tlkcaOr+pjgYY/gzNsGYe+IUdbFmeM8QvBjBnlLHkEFehyZxzi6MOocyBaREoiwG8D4dHEUhwXvHYVuM7V8jR2WaYPQV2lZ1fNnM34fCGtISAwmALAXztZ20rD4Xaw14IYVI/hJ0OAGkncnZFOFHhJ5Umh546wQOJzd5DCuK2hwGtLSyDtkJTJkY7Sppyd5Pwu9VVFDGaEvIqoBRGTMe/yR82yZlPrEsWdYUI3eAVBlAo1x0cvCOCZ940AOZSIMDZfypEyETf3iTg5lIswb1iQyE2ExLmjku5CJcHRGKU/LRDjFRql8YZkIZ+ghOSkT4dx3JpLITESv08WJMxEX3uGKzEK4RJv5tCyEK29VhrIQ7ouGQ1kIj9DR+MLmTI5F9SOpUNfuWOgdfMg0sN1APS0CBfV1WzWUNAjvXQCFnHsF9wsINZQeCDF2y5f3MJRjGbIehgobsgYtdgx/yJD1pvvQeuj/JKbJgczzXNcfF+Vrq0ypl7u06brUGvq5SrJKP5X3OY1t1hAZDt3QIfZQWmdg9KI8Pk5x60k+6eC+hbZx79zryobU9tF8CZFguoSGeETs0KqdMlZ6mW5WE6tbCU64LjJ9bJ+4z6NjtEc3IMsOLRX9QHPQ5LyTkGxnic6juyMbsvzIKYpZSSxSI5QLA7tYAM7g5Wm7qjDnb7Vebc9Slnunezung/XFJtsdIbqm5tQFWN0CmwKmIHcM09TAocFwi9fBLDTadr6hvW9Y7xtuzmMuugxIcaFopoEzhGJVbMqFnoO04Ip7hmy27O7PFraSIcO23XbsCVvJsU6p3jvlgQEF0injt+qUdh/xjA4psQ45NI9IhXRI+R4lDw2ITFjk20VJu51wRofEJjZyECFjrEO+R8jDmw4h0iHfLkIe3FE6k1cqivXKIZhUDOmV6j1MHhqQI4dEDQGF8t7lbLcH5FMfj7oYj959ED2SKuSattkzFffDMWgtP6nSX0Di0dX5FL1QVPvd//8vFBV6P3e36SDemf1ceV4LxXuXHasqvdWTdVncpktdDt9ukr34t3fw5kwy13lymTXbRV2iTEP8pSiJPCo0uNzchdwC8KbST589l81717e9mSS9rhf63wTj+1g0vAc8xV5a6IfSbv7IreF2Ae3JX47lL3ymginy2mh758ZT/CmSv0LyR179bJeLnvzjsXde/PhH4Vj5vYY38g/YCBdXEfIWvKRIwyDjVoZI/mLsvQxP/si4lQzJ3//cGImYETJkJRIxI2TISiRiRvFY/l4hFSMjViIRM0Z+riKRiBljAxeJmDEfezTuyV+Mld9veP1vwyERM0ZOtQqJaDEybhUSkWNk3CokosXIuFVIRKahd2atkJBJQ2TQKoGVnY3twMvradhGbak/2sCKp3/l024HqMGVj7lkOC+u5ntrN0qG10VkJ0W7JOn5qMtsx3TpI7Dn0U00T/u+spHk2QeMHWy2lnm+bP7R73DRUJ2wSlZ9ZvX/5KGJyg7rnvOyEw0j/LpX+ax7aRiPPoDt89O9z8GWeuEG59j5YZ+8fVs9W6ZP9nn2a69Gb/scjNLPAvNlrxump58s+231dH+HSSn6trGYIo30Y//uibLR57C9fsnRVo9fmtXRH6uYKywvy0Ry7JcCL8dE6LugUr40E01Hn+r3wls0+ki2l2U8+kjRsoTZ82MYSzN3vuKEEpjF6AV5JQgjQhEGxQieAi7TbREA1xRhfqSE0ba8e26YMNcc4pAZhsKVOWGC8F1ZKduGWT6uU2ZpHR9mJADkEq7MCaeW1jQl3LWHR9BG2DbmNYHM2rQxr4lwMsAjaONkAIWo6Ze7MsiwVda0l3RX5kSGrhwRSSSQ78pmyWArMRFERZYptGXEpAvGVoaJkYi6MnByUhgmBCJI7somqbMVbqm5oxaG2skkjc7S2cgQEhk5AlM2U6+tKEstHLXRQjnJpdXCWdIQEkUdgdUCPNtWYkstLTUQgj2YpTCNieK2kS0bx7UVZimcX5gGxPiffWM6VK5DFW0tIlwFtAqdgqYBMcmnaTYNtxXrEsayjVXs/0ZLy8oayToSZXs62KfWBO6dsDW5rUlbU9vadE8T+38rPYRA8+slLofcffi0bAHjP7/67PEP/4K6WZh1/9rJpIE5z5+vMPG87Wobz2RXmAWs7fvx668ePv/ku39//vDNFw9f/vrhd18+/v5vwVFq2VJ/95s/P/7zk+//+u3j3z99+OVnlvTCrR/NWqX54R8SZMmlzoyuf/kC+vv+H396+PaPD7/9FN7cgmWsXlKxWMSxlEwqzuj9/X8BDicdEA== |
回收机+电磁工厂:
1 |
0eNrtXN1u48YVfhdetcUo0PySFNC+RC8XhkBLY5tYilRIyqm7ENAN0AK9SHvRH/QyQBCgRS7SAgmCPJB307foGY4kUvbQnEPVzm68MGAPyTNnzs93hjxnZvwqOM82el2meR3MXgXposirYPbiVVCll3mSmXt5stLBLNCZXtRlsUouc12ni8k6S6DPlgRpvtS/CWZ0Sxy9LpKqntRlklfroqwn5zrr9mHOPqVe3CwyXXYI+TFhfbM2hB9vkiytbwKy75npS50vk/Km01Vsz0ig8zqtU21Vay5u5vlmdQ6DzCh5SFgSrIsK+ha5GdiIIj+SJLgJZpJ+JGGYZQry2ufCSHmHO0NyD1HcOZK7QnEXSO5RP3cSALIAPtn8XF8l12lRmk6LtFxs0npe6mQ5v0ry5dxQgRTgqLrcaHKg2N+3pKtiqQ16HDLLg8xVrXU2WVzpyiGroF1ZHXzUgc/5Jns5SfNKlzU8uM9p2qs1ZQ7G4YFxUqb11aoJpkWxOk/zpC5cA/Be9m6rtnyN2ZYNr8o8uEjLqp7fC6PrtKwhktowshQTnSyuTCBV2rAxvKraxLyJmGKty8SKEfwCehaber1B8966LB95ejAc8GDs7UGF8yCdol0YPy8XUurnQ8kHfEiZrxMlQzqRY50o5TNzovB0YjzkROntxAjpRIV1oqLPzImhnxOVHHJi5OtEJZBOjMd+gHG3qGw6liHrYUixMONhK+GPCTPvfr82nf4/OCRHMs8hW/ikKF82ypR6uf+wuyy1hnEukqzSd+W936chO3QyHNxwZ+37Yh9hA37qut7tmsr6rjpuQx6xT3yMwhmEwt27O0HWSQkNeD6ZggD7nGUW5EW5aowIAhoaI+As+GVzY9PMDNsz+HGqyZFqqkdUcxBZKKVZv9ICHYWH1wk/jsLoR5rrJ4872TN5PPFVa7C6c47mh3c2u5eoWS8bwmG3bQ/yr0swoiXO9IVJ8u+L559T0aEZOTzWdANoLC9LgNCyZ5Jv0zTmSE53Nk9zUMUpeoR7pQj+0GhPlAqzGG0k5mEk63CXlfjUF39C4vC3yQF4KyA4DYEcWesRot8eLvbe2YoIBwDOOdp36hSAc2StR8TvAMC5RBspOg3gyhfgkuIAXialPhXcIc6FcooDt3cCIPkQuNETk2SngFsgEwIp3wFwC4o2kjgJ3IJ5gzvEgVuv08WJ4BbISrdUKHALgTZ2dBIi/Usi8UAwCYWzjKLvArjR329qehq4kR9wiuHwE/vGjuK42GmXtE4LIDn1rt8MlUPk6BUz2cOQjWUoehi2s0XVrFsWpWcZoC877mZtkMwtXk6q9Lc6cA6Oz1NVd/iffp4qJdpCcQugd6NsKx/XQgoJ4LiNB58pvSv6bq6xUXfRzAi7W/OlrmozJBDi1XJo1c767t0EjoT04bCstHktLVIjkH0VNW+eNL8s9TJtX1FmO0CtV7vS1bKz2WCvPbysNpme8KAlNUUuYHUNbAqYf23V63AFlm0mgmA2Nao6n9DeJ6z3Ce99Ikxh7Mxl1wiHFiF7ouk0tFTFplzoOUgLHu2Y+JC8bx8PWe37t9qcNxI0xYIexYVzxX+KRmf0AZ3D6FQUh05JnxSdTeb9eMhUzAuZe6XdyORYZJpvkA/IHESmQCIzfFJkNmnzIyJT+iEzfAiZCotMM8s+KTLZe4nMEIdMxZ8UmUf7LB8LnpEXPPeau+EZo+GpPsBzGJ7h1M838QO+CalvQaJN98O78I5cjEdXE5S7mhC2r98VOHmzmlgwGRQVmX6onNDHUXR2B1RVeq0n67K4Tpe6HN6wGvYu4XfKcDbjnes8Oc8OGyicokj8RtcQWTg0QXPYO7CLjge3TFRrrZe7CDnaPtC3THLgwYZ59FSjz0iwqfRdOe/by38Rm/Xby8UYuXwj+qPCve84Grv26ck/Hiu/8onqyLt+2QquvASPsIvCIc4wEXI+ahdyPfnzsUu3nvyxS8MRkr9ELu1QJH81dl3Uk384Vn4/4Puvu06RwEdGbLuu62eYGLvsypD86dhlXU/+yMCVyBkzxq5pIieeWIxdM/XkL8fK7wX82PtN2wruB/wYG7HIGTNGvmolcsaM47FLvqHnARdk5KopdgBk6CqOHYCNXe/1HYCP1cAL/HQqvNdrGQ79dIqMWyWwtsFuSZDYAZABrBR2AOx2gRA7ADaEkVMEpdgQjrED0LED+AWA/9Gv1jaeAdA5+1XqjzeQb/fn3W11IBrMu82Gl3lxMe9U1ygZzsrJXoo2+ezZgm/qMS59BLl3dtqxGX6nxv0F9PenxN9Tj6KdI2b4gkrUc+KJeu/2bLd7O6z7mLt6aOd8l3c5IvIpR9DOga+lXlhLeqwpR747NHZM72zP6F69GL1b48ikv2pqO9amd/+3gV91+qznkGuMPgccIo30vp8+ZKOPSj8fE6EPF+7Xip+PiRjaRPy5mWj0cfafpolgxv8EVDLz/QtBKGHw64zYZtQ0JTTb1u55SBiRioimyQl8RPNdExBlCKAHgS9f04SHQBw1xIaQwGeloTaPCbX84BYjiloabmiUpVHmvmjuM0MvbV9oMwK+ZLYNw1o+EAHUCNa0oRsB7zV9jTzc0pg/REytnlPTtvTAgpPQ0kA34AQvLmEv4C61oxnmRhtq2zByaNvhrkdDZIZTVn1oc6LscDImkiiwxqEdte2QN21lzGVeCIaR4WH0p7YNjKx5DQ+ipO1g2uHUtnnTmdrORlFlxVNGOWUVNf32IyvVdGC2g3Ggii1R1OEaN0TWAMZCxHz1NDiQuwvr0NgYCkRv3Gj+NrLYK9pcsd0Va644XAECDyd/7WfH/lDAsoXtf3//2Zu/fw/X5sPbfVJ4cgg2zyOZZnrYDbWbHsi+MQtYO/bt53+4/fPnb/727+DBHrLt8faP/3rz7esfvv7uzX8+vf3dZ03XM5sTmO/Pwz+SIkGWQBJo9PvqH7d/ef3DN/+8/e7L2z99+rO3f/327Rev7cXPge4abNNoJhWLRRxLyaTijG63/wPLr/8+ |
回收机+铸造厂:
1 |
0eNrtHF2P47bxv+ipLeRAJEWKWqD9E308LAytzd0Vzis5krzp9mAgDdC+pX0IWvTx+lCgQAs0AQqk/UF7yP2LzpD+kHcliyPHzaV7uIelrOHMcL7IGY7uTXC1WJlllRdNcPEmyGdlUQcXr94EdX5TZAv8rcjuTHARXJerYl49BOswyIu5+VVwwdZhG655WCLcp6tskTcPQbiduDA3pphnB1P5+jIMTNHkTW4cPfvwMC1Wd1emAty76ddZ3UyaKivqZVk1kyuzaAD3sqxhblkgYcAn5CcyDB5gHmOfSKAzzyszcwAxsvkEPSeiT2joBRG9oqGPiej1EfRhACpvqnIxvTK32X1eVjhrllezVd5MK5PNp7dZMZ8iFLABymqqlQl3ENvfHehdOTeo3Q6m5Y7pujFmMZndmrqD2ZgdMNuBSO0QXa0Wryd5UZuqgRfPUUX962a8A3Oyw5xVeXN7Z5p8NpmVd1d5kTVlFwXRj79bsHvEKLm5RVbji+u8qpvpM2+6z6sGHGrvTQ5iYrLZLfpTbRAN4qqbDH0YHKdcmipzbAQ/g5nlqlmuyLjXXbLXO9hlvjSTppzcVBgXOkQjh/SYeusxIeqRRZ62pod4ZIxqEjJ6YSbBuLdNSD4ob+GnOTloXSz2NS8ZU81Lko0ieWlGofyNIh1UZeKrSsWoqtR+9qaGLTf1XrFSQ8h45L1iTVwxZ54rHlQL93f8RAwiE6MPfKIHYzwaI+/BSPZ7kbR4/CH93nveL3HS9xMYwgOep4VpPiur13YxlZlvz5E3lTFA5zpb1OYpv8/nWLDdJMTQHX/4Pv5sQ96Aog6U362b2imvPhxD7rLNh3DFC3DTp79uvSSrYADvJxFwsM2TLoKirO6sFIFDhEEOL4Kf2x9WNlavL+Ff5zoT4jrVOdc5aFukVfP+VWuyI+7DpDh0RP0D7b+T827APD2MfvUSxN65g4h9oOfPckOnZ4QcVtx6t4BlBVJ0wAtz3QRdGbL3DtdKCHvisnhSLIAtyFRuK+qJ9a3MkHdkxBux5wUsppN5YvkgFkfJ/Y8ScCHIYuI+YnJK75QTcQuO5RF6XfglEX9MxK/IEktOM6zE12tjRfTaVQHuegcAJ/qtJoskPdGI/OsEeihSxBHNYCSjGUxMLFvK6EMIDDH3tTopiFZXZZU50eJiYmYgOVFn/oWCwQwhllTvkPFJASNWROEkH4TBJWQxqdOCSKyJckqJRpQS8WsafhlRJabYSYYlmW9MUBExJphlPjsxJkhOFoc4zYCk8K7I8KEoIYnHIkU8FknisUjFH0JQkMrb4hKixe1vIE80u4QoWEVUnPY2snTQyNLR5S/Zc+8WjcYY92Bs1SLNAiRTVr5Vmr7aRTulhkx79npS5782QSd1Tq4iqAP6//9VBCXIIkpbRvRh3HTI84ooJtpw2vIJn1Db5n0T0pzrXdvAsPlpOjd1gzQBkL6ujmW19pBN48ex8oA8UkzEXWKWIx9uZ7AbQV7cVGae73cM7A1pzN2mpDhvNZ5sFw17x2phJiLYg2LxEVDdA5oSOHTVyN0TCNSGgOAiwhV2vmG9b3jvG4Flycsuoakx1+PPPEV3od5vPfXqChixoB1lga11dSpVeyg1/ajUQ6GlY+63vZSaRF5KleKYUhM2rNRW+vRRqVZofMz9tJ9ShZdSVXRUqfGwUlspzUelWqHJMVfwfkpVfkpNjio1GVZqEn2fSu1iQo+5tfcT0viUI+lOEPT4lEP1YNxHyzuQ1epuYg9tFRxrl+XCHM05+lBy7wL14YKHmzW0OFDWUYx93FHvYFQ/j11K15J2/m3hV+uTTrx1uapmZmqdcdYKWLubjvXZTseaWnYVRKF6dzy1jhyeJqVp+mqxfiZ92TuCM+oqHfChlgh7fCj1vqxuHRb81JGyIe7SQe6It9Gtgq2XMaaCZjEt/GeyGFtBPp/FpMSUvlWPPNOCDz6hONeqqVXjhGhG3n37SlGdKBlwohbGPifSAyhah6E+FPtAU5lPV6AdU/V1V7YOKmnvMW9bQsei+bS8nraMiB0U2F3RbGqK7Gqx65Jbh1s2prturZ5+LjxQd3XRe4e91nK0jy2wiLVkNXuYLTqx6q2InlcSf/TJCotaKWhW1/m9mSyr8j6f91tNqxUq7elCjsQpWPWgLfZaWycz8YhPdTTxCgqToZ2Bb1LZVW2e/tbBnfRuttn7focpnvPGiUX+XzvxJyFl4LKJRckI1NoPtR7d+KU9v/BJR7d+eVJofUQ0h1zbOtDRvKZP+H0XHxusT2492k+vRl+CHNjcLwL82tIZ3dOPO/2OC91tuIwR251a3XG+SuCjs1dfCuQrrlhTNf1j/5iHUWsIKVkL1E5OTaagRn/J93L0nIxuj/TVgh7dIOlLISXrmb80PfNodPnKUwucjW7a9KVA7t7AtqsXpmdq6yz5GEb9yE6Sj2Fcju5w9aVALeaSzxg8Gd196ktBj+4/9aVAPHAr8t4gotF1TF8KxKikyHGP+mWQIsc9QT6vKvnS4p4Y32Drq4XxLba+FNTocqwvhfHdrF0UIMX8DH7ABPNVHLIQQhK7DO0QvAKHEoaQVW+HG4Ak5KGKw9gORQg5pdgMFbMAOCWENM2OYVqopYVGyBASBwTH1yFzCOEngNEORiMhh4cjUeXQc4SBsMzdGGg5FmEvYMiNHQOKUAmLB1cQxg4P/gkh3bdjhJfSjgEFcBE5RmEeTGFuNiIJ09RSQ+S4AubGQHkzlpsJFigJZZhEodyONXNj7SYLN8YJyk5A2DARFsiNlRsjryAL4cY4wbGBsDsgZCkVDihGIDhcWaAEX8TuBeoJow++QP4RLTKOf3A2jvEPTnBqszrZKBxrge7JqgsFY5l3ilT2Kd08pfgELNgn/GvpxpdgYbtPqF0dY/sVw3wfHt7/9st3f/oPPGNduPuT68kuqHl+2IresyG18Z5wO7gI+J72u3/85fGr3zy+/d3jH96+++PXwdF5cj/vu39+++6bLx4//9JOunQlayzL7f5rrjBYZOCVuL6//xlofPevvz1++9fH33/xk/df/fv9529h9FMAugfB2GVJxdM4TaXkUgnO1uv/Amh7PEw= |
如果是生产高品质的原料,比如说铜板,那么将铜板生产成铜线,就会考虑到底是使用产能插件好还是质量插件好。虽然质量插件提升了出现高品质物品的概率,但是产能插件大幅增加了产率,特别是高品质的高级产能插件,能提升相当大比例的产率,可能能生产出更多的高品质物品。
参考Figure 2,考虑以下的生产步骤:
flowchart LR Input[(蓝箱输入)] --> Ass[组装机] --> |低品质| Rec[回收机] Ass --> |高品质| Output[/红箱输出/] Rec --> Ass
如果以上图表没有正确渲染,请刷新页面。
令每次的产物$X$都用百分比表示,其中1代表原料投入的数量,如果是0.1,则表示剩下了10%的物品。
$$ X = (x_{普通}, x_{罕见}, x_{稀有}, x_{史诗}, x_{传奇}) $$
而每次经过组装机或者回收机,则是将原料于一个转换矩阵$T$相乘,输出则是新的产物的数量。不过在生产出传奇物品之后,会将这部分收集起来,不参与矩阵乘法。
其中$T$可以表示为
$$
\begin{align*}
T &= \begin{pmatrix}
T_{普通到普通} & T_{普通到罕见} & T_{普通到稀有} & T_{普通到史诗} & T_{普通到传奇} \\
0 & T_{罕见到罕见} & T_{罕见到稀有} & T_{罕见到史诗} & T_{罕见到传奇} \\
0 & 0 & T_{稀有到稀有} & T_{稀有到史诗} & T_{稀有到传奇} \\
0 & 0 & 0 & T_{史诗到史诗} & T_{史诗到传奇} \\
0 & 0 & 0 & 0 & T_{传奇到传奇} \\
\end{pmatrix} \\
&= (1 + P)\begin{pmatrix}
Q_{普通到普通} & Q_{普通到罕见} & Q_{普通到稀有} & Q_{普通到史诗} & Q_{普通到传奇} \\
0 & Q_{罕见到罕见} & Q_{罕见到稀有} & Q_{罕见到史诗} & Q_{罕见到传奇} \\
0 & 0 & Q_{稀有到稀有} & Q_{稀有到史诗} & Q_{稀有到传奇} \\
0 & 0 & 0 & Q_{史诗到史诗} & Q_{史诗到传奇} \\
0 & 0 & 0 & 0 & Q_{传奇到传奇} \\
\end{pmatrix}
\end{align*}
$$
其中$P$是额外产率,比如说用了产能插件之后会增加,而对于回收机来说,应该取值$P=-0.75$。而矩阵中的$Q_{*}$是指在给定总共的质量加成$Q$的情况下,计算出的
每一个品级到另一个品级的转换率。这部分的计算可以参考官方wiki[1]。
定义每次产物的的起始状态为
$$X_{0} = (1, 0, 0, 0, 0)$$
则之后的每一次的产物状态可以表示为
$$X_{t} = X_{t-1}T_{回收机}T_{组装机}$$
但是需要注意的是,每次进入到下个循环之前,需要移除掉传奇物品,然后将其加到最终的产物中。
当流程确定之后,就可以通过Scallop[2]来实现这个过程。Scallop是一个用Rust实现的,基于符号推理的编程语言,可以用来解决这类问题。
1 |
type production_after_assembler(bound iter: i32, common: f32, uncommon: f32, rare: f32, epic: f32, legendary: f32) |
注意并没有直接在scallop代码中定义输入的数据,而是通过在和Python API中进行实现,方便一次编译,多次循环调用。
1 |
from scallopy import ScallopContext |
在代码中,预先定义了每一种组合(不同的产能插件和品质插件的组合,还有是否有50%自带产能),然后编译Scallop模型,把每一种可能性都放进去模拟,计算出传奇物品的总产量。
通过以上计算的结果,画了一系列热力图,来展示不同的组合下,为了最大化传奇物品的产量,应该选择用多少产能插件和品质插件。
Fig. 3. 最优的品质插件数量,4插槽组装机,无基础产能加成 (组装机3型)
Fig. 4. 最优的品质插件数量,5插槽组装机,50%基础产能加成 (电磁工厂)
Fig. 5. 最优的品质插件数量,8插槽组装机,无基础产能加成 (低温工厂)
从上图可见,最大化传奇物品的产量,并不是直接堆质量插件即可,而是需要根据产能插件和品质插件提供的加成来灵活选择,主要是考虑产能插件的数值。具体的最优化选择可以以上面几张图作为参考。
2024-07-06 23:09:18
之前的文章中讨论了如何在Windows上配置最佳的视频播放器用于看番,然而这个方法具有很大的局限性。这篇文章将介绍如何搭建一个更加完善的系统,为了获得真正的快乐终极看番体验。
之前的文章中介绍了如何在 Windows 系统中搭建一个拥有超分辨率和插帧的视频播放器,这个能保证很强的画面效果,但是这套看番的方法依然有很多局限性。
为了解决以上问题,我们需要一个更加完善的系统,这个系统将会搭载在一个上24小时开机的家庭服务器上,这个服务器可以是NAS,也可是软路由,或者是存算分离的Linux服务器。
考虑到不折腾,本人选择了自己DIY一个基于低功耗x86平台的NAS。考虑到折腾软路由可能会让网络没那么稳定,就没有打算在这套系统里使用软路由。家里现在是一台ASUS的硬路由,一台NAS,一台高性能的Linux服务器用于游戏服务器和爬虫脚本等等,然后是一台台式机用于日常游戏和学习。这样的设计是为了让每个设备都有自己的用途,不会因为一台设备的问题导致其他设备无法使用。这篇文章主要会讨论NAS上的部署。
这次是购买了一台蜗牛星际B型,带一个ITX主板+赛扬J6412。到手之后,换了一个靠谱的海韵Flex电源,又插了2根8G DDR4内存,确保之后的docker和vm不会有性能瓶颈。并且把机箱风扇换成了猫扇,确保散热效果。
硬盘方面,用了一个512G的老固态做缓存池,然后是4块8TB的机械硬盘做主存储。
Fig. 1. 硬件配置, 照片拍摄于刚刚买到基础的蜗牛星际机器时,很多硬件改装还没有开始
NAS系统现在主要是四个,黑群晖,OMV[2],TrueNAS[3] 和 Unraid[4]。
综合考虑,自己不拿这个NAS作为热访问的存储,所以对性能需求没有那么高,只要能拖得动4K视频就行,所以最后选择了方便部署服务的Unraid。
Unraid系统安装非常简单,买了一个U盘,然后下载Unraid的安装器,把系统安装在U盘上,然后就能用U盘引导启动了,不需要把系统安装在硬盘上。
Unraid的存储系统是基于JBOD(阵列)和Unraid(池)的。阵列是允许一系列不同大小的硬盘组合成一个大存储空间,并且用1~2块最大的硬盘用于校验,如果阵列中有少于校验盘数量的硬盘挂了,那么数据还能恢复。但是由于阵列的写入就是一块盘,而且还需要实时计算校验,所以性能比较差。而池是允许组成ZFS raid的,可以保证性能,也可以不用raid就单个盘。
Unraid本身是支持多级存储的,比如说可以用一个池来作为缓存池,然后把阵列当成主存储。这样的话,写入的时候会先写入缓存池,然后再定时把缓存池的数据写入主存储。通过这样的设计,IO性能就会提升很多。并且不用保持主存储的硬盘长时间开启,也可以节省电费。
所以,我就把512G的固态硬盘作为缓存池,然后把4块8TB的机械硬盘作为主存储(1块校验盘+3块数据盘=24TB)。这样的设计可以保证不会有IO瓶颈,也可以保证数据的安全。
除此之外,通过插件,unraid也可以在webui里把SMB/NFS之类的远程磁盘挂载到本地。比如说现在在这个Unraid NAS上挂载了一个老家的威廉通NAS。
Fig. 2. Unraid的硬盘配置
这里推荐一些必装插件:
Dynamix Cache Directories
: 可以把文件夹的metadata缓存到内存里Mover Tuning
: 可以调整mover从缓存池移动文件到主存储阵列的行为,比如说只移动3天前的文件,更加合理Swapfile for unRAID 6.9
: swap文件,不然内存容易爆。标题说是6.9,但是最新版本也可以用Unassigned Devices
: 用于挂载远程存储,比如说SMB/NFS,还能挂载USB设备等等unbalanced
: 用于在阵列中移动文件,从阵列中的一个磁盘里移动文件到另一个磁盘等等User Scripts
: 用于设定一些定时脚本, 比如说用rsync
备份文件,或者用rclone
同步文件等等尽管有公网ipv4,但是为了避免把端口暴露在公网上,现在主要用虚拟网络(ZeroTier[5]和Tailscale[6])来进行内网穿透。现在在NAS上部署了Tailscale,通过route,可以让这两个虚拟网络的设备互通。
稍微画了一个不专业的网络拓扑图。
Fig. 3. 网络拓扑图(建议使用亮色模式观看)
首先是aria2[7]和qBittorrent[8]用于NAS上的文件下载。Aria2建议使用这个docker[9],这个docker里面包含了一些开箱即用的设置,比较方便。至于webui,可以使用AriaNg[10]。qBittorrent可以使用官方docker,然后用peerbanhelper服务[11]来ban掉吸血雷等客户端。
如果使用qb卡死,最好降低同时做种和下载的数量。
其次是文件同步,建议使用Syncthing[12],这个软件可以在不同设备之间同步文件,而且是p2p的,不需要服务器。可以用这个来同步一些文件和文件夹。
顺便提一下,用Syncthing去同步git仓库,可能会导致git仓库损坏,所以不建议这样做。
用于文件分享的话,主要用Alist[13],这个软件可以把本地的文件夹 (和网盘里的文件) 分享出去,然后可以通过webui下载文件。
用于NAS的文件管理,建议使用FileBrowser[14],这个软件可以在webui里管理文件,比如说上传文件,删除文件等等。
Fig. 4. FileBrowser的webui
为了能访问NAS上数不清的服务,可以使用Homepage[15],这个软件可以把所有的服务整合到一个页面上,然后可以通过这个页面看到服务运行的情况,也可以访问所有的服务。
现在已经部署了一个Homepage,欢迎参观。https://portal.controlnet.space
另外也可以部署一个glances[16],用于监控系统的运行情况。
Fig. 5. Homepage的webui
没有人喜欢需要手动去找动画资源,然后手动下载手动整理的,所以需要部署一些工具让它尽可能的自动化。
首先是考虑了以下的一个工具链:
蜜柑计划和 AutoBangumi 都是基于bangumi的元数据,其中蜜柑计划会完全采用和bangumi一样的动画标题来整理BT种子,另外蜜柑计划也会根据字幕组/压制组进行分类。这些种子都会作为RSS进行广播。在蜜柑计划中,可以注册账号,然后订阅自己感兴趣的番剧,然后这些番剧将会被聚合到一个RSS订阅中。
AutoBangumi 有两种使用方式: 订阅和收集。订阅是通过观测蜜柑计划的聚合RSS订阅,然后根据规则自动下载新出现的种子,这样可以保证一直保持新番更新,而不用手动去找。收集是通过输入RSS订阅,根据规则下载全部种子,用于下载已经完结的老番。
AutoBangumi 在下载种子之后,会自动的把文件重命名为{番剧名}/Season {季}/{番剧名} S{季}E{集}.{后缀名}
,这样方便Jellyfin刮削。
例如,
1 |
├── 怪人的沙拉碗 |
媒体服务器考虑了plex[20], emby[21]和Jellyfin。plex和emby的收费内容很多,体验很差。只有Jellyfin是免费开源的,而且生态也很强大,所以选择了Jellyfin。Jellyfin可以通过webui来管理媒体库,也可以通过客户端来观看。
Jellyfin有一个bangumi插件[22],可以通过bangumi的API来刮削动画的元数据,因为下载的时候是根据bangumi的元数据下载的,所以通过这个方式可以保证绝大多数动画被刮削到Jellyfin里。但是bangumi的元数据相比于TMDB[23]和TVDB[24]来说还是有很多问题,比如说对不同季之间的合并做的很差。而且bangumi没有除了封面之外的图片,比如说背景图,logo等等。
所以最后用tinyMediaManager[25]手动进行元数据匹配来兜底。一般情况下,刮削好元数据之后,视频文件夹就会像以下这样,以后如果用别的播放器或者媒体服务器打开,也能确保一样的元数据。
1 |
├── 怪人的沙拉碗 |
Fig. 6. Jellyfin的番剧元数据界面
有些时候除了动画番剧之外,也想看下电影和美剧。这时候用 Servarr[26] 全套来做自动化就很方便了,反而日本动画因为格式不统一且高度以来字幕组,导致用这套系统效果很差,但是对西方的电影和美剧就很好。
这套系统包括了
在 Jellyseerr 中,需要设置好 Radarr 和 Sonarr 的 API key,然后就可以通过 Jellyseerr 来搜索电影和美剧,然后自动下载。
Fig. 7. 在Jelyyseerr中可以订阅几乎任何的电影或电视剧
但是想要做到自动化,需要在 Jellyseerr, Radarr, Sonarr 和 Prowlarr 中设置好 indexer 和下载工具,这样才能保证自动化的流程。
用这套系统去自动化动画下载是很困难的,因为动画的资源很杂,而且不同字幕组之间的格式也很不同,元数据很混乱。动画自动化只建议使用AutoBangumi。
Fig. 8. Jellyseerr中设置Radarr和Sonarr服务器
Fig. 9. Prowlarr中订阅indexer,并设定Radarr和Sonarr服务器
Fig. 10. Radarr中设置媒体库和下载工具 (Sonarr略)
这样,在 Jellyseerr 请求电影和美剧之后,就可以在 Radarr 和 Sonarr 中看到请求的电影和美剧,然后就可以自动下载了。然后在 Jellyfin 中就可以看到这些电影和美剧。
尽管可以在服务器上自动下载和整理番剧,但是依然需要通过本地的播放器软件来观看。为了使用先进的插帧和超分辨率技术,现在建议使用mpv[31]。mpv是一个开源的播放器,支持很多的插件,比如说插帧,超分辨率等等。
为了方便使用,可以使用MPV_lazy[32],这是一个mpv的整合包,里面包括了很多的插件,基本上不需要自己再另外准备什么了。这个整合包里提供了一些vs脚本,可以用于调整插帧和超分的参数,也可以自己在上面改。比如说,
1 |
# MAIN.vpy |
这样就可以在播放的时候同时用RIFE插帧和ESRGAN超分辨率了。
其次是需要在客户端上装一个后台服务来接管jellyfin播放,这样可以在jellyfin网页上点击播放之后,自动打开mpv。这里推荐油猴插件embyToLocalPlayer[33]。
本文介绍了如何建立一个自动化的家庭服务器系统,用于自动化下载,管理,观看番剧和其他媒体内容。在这里分享了一些自己的经验,希望对大家有所帮助。
2023-06-09 00:16:18
表征学习(Representation Learning)是一个深度学习中的概念,通过预训练一个特征提取器,把原始数据转换成有意义的低维特征,让下游任务基于这些特征进行训练,从而降低了对数据和计算能力的需求。本文将介绍表征学习的基本概念,以及以Masked Autoencoder[1]为主的最新进展。
在过去的几年中,深度学习在各个领域取得了显著的成就。然而,深度学习的成功很大程度上依赖于大量的标注数据,而这些数据的获取成本往往很高。例如,对于计算机视觉领域,ImageNet数据集[2]的标注成本高达200万美元。因此,如何利用少量的标注数据来训练一个高性能的模型,是一个很有意义的研究方向。评价一个深度学习模型是否好用的时候,一般会以两个方面进行对比。一个是性能,比如说分类任务的准确度,生成任务中的PSNR,SSIM等。另一方面是运行的效率,包括训练和预测的时间,以及模型的大小。
但是,以GPT-3为例,其参数量高达1750亿,训练时间长达355个GPU年(V100),数据集包含了4990亿个token,花了差不多460万美元[3]。这样的模型对于学术界和初创企业大部分人来说,最多只能通过API访问,不可能通过自己训练和微调来使用。这个就是深度学习的民主化问题,只有少数人能够享受到深度学习带来的好处。因此,如何在保证性能的同时,降低模型的大小和训练时间,是一个很有意义的研究方向。
直觉上,通过提取有意义的特征可以降低数据的维度,使模型训练更加容易,包括减少了对数据的需求,也降低了模型的大小。这里列举几个在不同模态下常见的特征提取方法。
torchvision
库加载预训练模型model_ft = models.resnet18(pretrained=True)
Fig. 1. 光流. Adapted from [7]
Fig. 2. 梅尔频谱图和MFCC. Adapted from [8]
Fig. 3. Word2Vec. Adapted from [10]
transformers
库[12]加载预训练模型model = BertModel.from_pretrained('bert-base-uncased')
如果将刚才提到的全部特征类型分个类,那么大致上可以分成两类。
AI教父Yosha Bengio在第一次ICLR会议上提到
Learning representations of the data that make it easier to extract useful information when building classifiers or other predictors. [13]
那么表征学习的意义就是通过学习数据的表示形式,使得在构建分类器或其他预测器时更容易提取有用信息。换句话说,就是需要想办法获得一个更好的特征提取器。
Fig. 4. 智能系统的发展
如上图所示,智能系统的发展经历了四个阶段。
Fig. 5. 表征学习的架构
因为带有标签的数据集很贵很难获得,所以当我们训练模型的时候,一般不会从零开始直接使用有标签的数据集。相反,我们会先使用未标记的数据集,从零开始训练模型参数,将其训练到合理的水平。这一部分,我们称为预训练(pretraining)。
在预训练阶段,使用未标记的数据集从零开始训练模型参数,将其训练到合理的水平。一旦参数训练到了合适的水平,我们就可以使用标记数据集来对模型进行微调,以适应特定的下游任务。在这个阶段,我们不需要大量的标记数据,因为参数已经在第一个阶段训练到了较好的水平。
第一个阶段没有涉及任何具体任务,只是用一堆未标记的数据进行预训练。我们称之为“in a task-agnostic way”。第二个阶段是使用与任务相关的标记数据对模型进行微调。我们称之为“in a task-specific way”。
在了解了表征学习的概念之后,这里介绍一个领域内较为热门的前沿模型,Masked Autoencoder (MAE)[1]。
Fig. 6. Masked Autoencoder的介绍. Adapted from [1]
如图所示,MAE主要概念是遮盖输入图像的随机块并进行重建。它基于两个想法。
首先,研究人员提出了一个编码器-解码器架构,其中一个编码器只对图像的可见块子集进行操作。然后,一个简单的解码器可以从可见部分的潜在表示中重构原始图像。
其次,研究人员发现,如果他们遮盖了输入图像的大部分,比如约75%,实际上可以产生重要且有意义的自监督任务。通过结合这两个设计,我们可以高效地训练大型模型,将训练速度提高3倍或更多,同时提高准确性。
一些模型结构上的细节:
在ImageNet上的实验结果如下图所示:
Fig. 7. MAE在ImageNet上的实验结果. Adapted from [1]
其中这里”scratch, original”代表从ViT原论文[14]拿到的结果。
“scratch, our impl”指的是一样的ViT结构,但是使用了作者自己的参数。主要是有更高的weight decay。
“baseline MAE”指的是从预训练的MAE模型开始,进行微调的结果。
这里看到相比于从零开始训练,使用MAE进行预训练,可以提升大约2%的准确率。
为了能更好的选择遮盖的比例,作者进行了一些实验,如下图所示:
Fig. 8. MAE在不同遮盖比例下的实验结果. Adapted from [1]
上面这张图是在finetune下,也就是同时训练编码器和分类器。而下面这张图是在linear-probing下,也就是只训练分类器。
可以看到,当遮盖比例过高和过低时,都会导致准确率下降。而在75%左右的遮盖比例下,可以达到最好的效果。
除了遮盖的比例之外,怎么选择遮盖的区域也是一个问题。作者进行了一些实验,如下图所示:
Fig. 9. MAE的不同遮盖策略可视化. Adapted from [1]
Fig. 10. MAE的不同遮盖策略的实验结果. Adapted from [1]
其中random就是完全随机遮盖,block是选择一个方框区域进行遮盖,grid是有规律的进行网格状覆盖。
从结果可以看出,random是最好的。
既然MAE可以用在图像上,那么我们能不能将其扩展到视频上呢?答案是肯定的。我们可以将视频看作是一系列的图像,然后使用MAE进行预训练。
去年NeurIPS 2022有个spotlight工作就叫VideoMAE[15],就是将MAE扩展到视频上。
Fig. 11. VideoMAE的结构. Adapted from [15]
如上图所示,总体的结构其实没有什么大改变,依然是通过遮盖的方式进行预训练。改变的地方主要是使用了3D的cube而不是2D的patch作为token。
作者在Something-Something-V2[16]上进行了实验,如下图所示:
Fig. 12. VideoMAE在Something-Something-V2上的实验结果. Adapted from [15]
可以看到效果还是不错的。作者在文章中提到,为了训练这个模型,他们使用了64个V100。
他们也讨论了最佳的遮盖方法,认为是tube masking是最好的,即在空间维度上进行遮盖,而时间维度上保持一致。
Fig. 13. 不同遮盖策略可视化. Adapted from [17]
有趣的是,另一篇论文MAE-ST[17],也是在NeurIPS 2022上发表的,也是将MAE扩展到视频上。而且方法和结构都非常类似,但是他们认为最佳的遮盖方法是随机遮盖。
Fig. 14. 两篇论文关于不同遮盖策略的实验结果,左边来自于VideoMAE,右边是MAE-ST. Adapted from [15][17]
VideoMAE的作者认为,使用tube masking可以避免信息在时间维度上的泄露。这个泄露导致编码器看到了本来被遮盖的信息,导致性能受到影响。而MAE-ST的作者认为纯粹的随机遮盖可以防止模型对信息产生bias,从而提高了性能。
个人认为VideoMAE使用的数据集要小于MAE-ST所使用的,所以可能是数据集规模的区别导致了不同的结论。
Fig. 15. 两篇论文在不同遮盖比例下的实验结果,左边来自于VideoMAE,右边是MAE-ST. Adapted from [15][17]
而关于遮盖的比例,两篇论文都认为90%是最好的。
本文探讨了表征学习在深度学习中的重要性,并且介绍了MAE作为目前比较前沿的表征学习方法。MAE的核心思想是通过遮盖的方式,让模型学习到更多的信息,并且后来社区将其扩展到了视频领域。通过使用这些预训练的模型,普通的开发者也可以使用更少的数据和计算资源,将这些模型迁移到自己的任务上,从而获得更好的效果。
2023-05-06 02:22:28
前一阵子在异星工厂(Factorio)上玩了一段时间,这个游戏的玩法是建造工厂,从最初的手工采矿到自动化采矿,再到自动化生产,最后到自动化科研,最终建造火箭逃离星球。为了下次更好的游戏体验,最近特地的制作了一些用于原版的蓝图,方便下次游戏时直接使用。
这次设计的这些蓝图,大小都是以区块(32 x 23)为基础的,有的占用半个区块(32 x 16),有的占用一整个区块(32 x 32)。在使用蓝图的过程中,摆放也是自动锁定到区块上,这样方便规划建设。
1 |
0eNrsvX9vI8mxJfpVCP11DUi+lb8zG9gH+BreBwPXgHHth8XDzGCgltg9fFaTWkqyPTbmuy+LVFMlNYN1zhHLD4slDIy7KPJUZOSvyMiIE/+8+Hj3NL9fL5aPP35crf5y8eGfL588XHz4bvDY/+12/nCzXtw/LlbLiw8Xv7te3/08+3z9ZT77cn13N/u39fx29nCzmC9v5r/69ffL75d/Wvxj/mEW/Ozvm//0H/x+ef/0+GH2/XJ2Nfvuz6v7H2a/Xd3fz9ez+7vrx/nu4/+cf3r8Yfb79Wq5+/Ti8uJheX1/9bi6+rxe3PZy/P3ig8uXFz/3//fL5cX1x4fV3dPj/Kr/3v1i+fniw+P6aX55sbhZLXfNeFh8Xl7f9b9dbuTdCH/98DD/8vFu8+WrL9c3Py2W8yt3scFaLG/nPfwvlwd+9Li+Xj7cr9aPVx/nd4+Dr/uDX18sH+brx/l68MVw8Iv3i/v54Evxlx8uL+bLx8XjYr4Tf/vw84/Lpy8fN3Af3KUh0eXF/ephseufnZrcr9NOUb9OmxfcLtbzm92fYy/JG1yP43YMbuBxu7e49QBuxHEDI2/CcT2Dm3HcxOAWHDcyuHWP+3B/t3jsh/K3iPkZ0Y/jNVzOwsjpOhy4UsDETGsUMD7VPDXVHD7XPLU2OHyyeWpSOHy2eWoWO3y6eWpaOHy+eWoeu4oDZwoYn3memnken3memnken3memnme2OS+rmwQbqBxN6P5l0NIxEyjJHyZaHvLxES0ZMsARhjBwKdPoNqHz55I4Tagzel4mwM+TxIjW3iZJg+9EX41v9t8fb24ubpf3c3thltieqCpeQQDnwiZaio+LQqFi0yLOtJmfKuplGwFkK2NyIZPi0bJhkwLN1xDD1nwL/Pi4InMNrjjVsaNhP3Z6cPFzfYceXVz/XE77Hef//g/n643duvm2xfL1XozPy4OiUBOof0RxdB3ROaQ8yN6CaRQYQQvsnpOJ9czMs9cHGkHsv+4NAJS+HOIh86jlQcOEHBju6+duvtSh2i+Hdd8cmQ7/Mmne/LczPIjK1gKiFU1Mt0TOz39yadngqzDkZmVMtuOevJ2FLJ/y0iTKqKXOgLS6MNBPIyUOxopGUjsXAwDvEFXLdar5dXn+fX66m8/zed3XG9lTwqRpxAikEK0KYSI/N6RkL0jJx44QsCZHorFGIqFRsoGUiXOuJY0jTjjGhilI86MFoZ4trPgmLOdhRGIs5KFEYkzjYWRmLOHMVZK5q9RCuSOL8wJwJKu8pcQmHSNvzUpyHpQO/HMYmigOsbWt0A8c+qwQAJ/wQL1RY38jRDWF8SinyngzO8m3wA7fwj5ZdY8LW/n68/r1eb/x7DzN0JfXjz+vNuO+8vmQ1tthe61vi5jFZG9MYcjY5S1jr9swlTbkJm0v2eyxBOurEDxAtAf+3MY0h8tioc8q+2JOeRZIJm/QQMViGw4fmS5bZW/hwPFa0j/RqJ/Xdcxp1Wjxa5z/EUe1mTXIfvO/hLPFDDwF4KogJG/EkShk3gEN9WQ+VtGVNbC3zOi0NBZpI21vTH+BwvF8W6DakE5GqpZUJ6+CayY7pkwCAu5HgTmL2cbBoxsMZGDzMQhFIQs9B0r2mOVviFFkRu3HOWRUeuRvadQaiWiHTLXeCLcoZDIjC8AVEOkr1FRYRN9CYoiC16EBkIXPm4Sha7ipae1K3jBqwDKSsROOE9CO17qioXheV5oEDnwPgNUHZH3c6DQiTndmys8cLp3RDCGiyPDOghXxdhaF4S7YsxECY33/YC9GDseGhM6CpG24AqNBWQ0qvdi4J0hqLiRcdaA4ibRH2LZQFHwZaDtL4yvBWy/4NtAxW2M7wUTN3W8XwIUNznGcQKK63kvBSpuYNwooLhRdE9YkyEl3oeAtj8zPgRTQCLithvDqjwW2lg+SqK3Sw+KKcRJ9Ob5YSxHn/kdlL/k6PCHOJT1VKEHLvPeEuewBrKBTWWaBiY2fm6fdONfy7FbK1bLzWpxs1jfPC0eWVGgCMZudHwX5gbchqmsYsJkioHu0MJYiwp7C+1HER1zhWzDeOUEdGAh2R+BVk+P1hmoBCh1j5nKRQhQ+lb6wyt/Ea6rwSV2EOVBXCsf0Amk9qLG6b5d7/QASFeqGmR7SiGaGtF6QiFqp4ajvhXC+DkljOMNJ9MkqV4As1amyqeuuWBhRR7LW1iJN0ugOH1XmUXBD9tMe6NqIaIJXcDEJ723abTXGnH5BArZOiLeEMV0xNULiumFfQ2EDszek+0xDIyzpmzP2GxppPfI5bHx1iAjuJLaLkKyfsDSp6uQrg9KDfmPHAXqu05I1g9YwrcT0vVBaC8k7IMKofxIKCjkqS0kaGI8PtYM84OQGczJVUcRBSeStbX7TvAi2ZIJfiMjvcYPAmWOxKrtMJKFIfiLIkaKwAfMoMiBDr9AkSMdMoIiJzq2AUXOdDwGilx4mROGXOngCQfl+XiCPaRyMhP0IY1EdkSWCagHhjrEkeIKFFkodKQcjtbC6FkjcHSpZSJnPNnmIjCDgdCVSe5BRxbn+7Q0OoiUYVyM3zZ8/Lzhh8wjtodxv6J/+4ZPi7v+Ny8seAc9yN+4Vi4vblZf7q/X14+rzY8v/lvPm7fzyP14v16s1rsvrxeffzLkVo572NoeIKdrMZR+cGAMInKYE2RUvJc+JIFGDVQN5YWtwMg81g7lIGjOKShZaA+TEWU04TRpGZtESI7vuE4jYnK8I6FVFgZbD2wS98vpNFuQCuWdNY4g+hM/usRDBCjeXtoP3r94ghHFk0Y6E3pDniyw0JsyNnISs2u++AikXTM5geEP0wYThUNubInxY/p3rt4pUg4QcIQP6U36UIKbn+YPR7kEd5r5eL3NwTmImCHE8MZcP4bIZMCGN4s5oNjKu0mgnGCfkAS/vbwFGHFK+I61jCvhO1i7s1eukbJknBExOtF80+G5QVCPJBY6ESlIrlg9mJnrKROl8E4dtJmV9+qg0I258rLazkbF5FFAx/uEwBYXzzuFUGgmZ8luexScNaiESfAxodiZihkzm18oh5IJUwUfDdrSJriWQOzaUb4aq/nVqXFqJqIXaODRRgcqBs4UUeA7gUVMAnbBiIWzEJ6Gii3RnjiF98TXKrQDVJHC7Y9BK7woDsvR980JLi/MOFT4UmCxAxU0gKJGQeKMKYNNQBq1CRtNNflm2O1j+z4/La8en9brORmx7DHaFXpIksFdvo0dgIYhJtBJtbycVP1BMnPhdAbl5oSOJ5dwFUP2/CkQlFnIngBljmp6SDttcH7okprHcXJJspzKcXJRipw8cXJRqmD8NKtWQRPAjAzq4DrJvmmKkyQw3DR5TA1EsM0LWMWqNgRJKVVwOQci/ubFxMHWJ5ekW70m2K7BUTeIDVDZsXFEkki/vM8cTEoEKbb/OOU6EetgiOrG23v8QQsnQLE5L1dhoKhevf/z3evF+NP1w+PVQDBmHfZBtUrfSnG32vzwp+vNUL+VheFuUrCli40D8qNTw2fp2qNh1x7Ba7cqdQhvL0uev1TxHTagGxyJ6qEMvkCFB3lbWkAtwRF+f++sSkKe8PujSgiEPx3FjJp33W44U5PIRqFSjdG2UonHtmyV8aKisjXRp2qKGTuqaI0J4/B03Oe2Thoedzf/dHjeRs+b/r6zWh2EOjvY4hiFbCdwEEUhF9lWAe2lejMd9/bAYNwwNkAsionupfTnMIj1McwX84VYonjAQn6a2YzDBeA6ChQUdRDqQ9gdzyKPbrCDaB/Ip/cstR19EhKfBeyh/MGQ+JxgHzDkxJeSBIsCZr4IJ4hceGSrtF/iSVNRKRtfTBNDJkJ7ConMs6iiyHxIAooc+MqRIHLkIwlQ6MQHQKDQWYAO2IrMlBlyLLYQzYCqRAhmAKFLJ0gNaoSIEHKexRZCHVCVCPSq3khzDUWId4B1kAQdoNhClRfQGChK8U1UbCG+AcZurG3bOFumdryfHtR5FaIcUKk94yFGQcnqt74bM5QGgUdY73lPqjjxuSIeokUIRPSRDyQ0VTjGXOaIuCIfSQmhA1/kOqsJ/KqgvM2JgS6mcgdxREf8wC9L5Xii5dsLjlM7kZpQtQZVb2R4PNDhIPC3ovJmLu3kWeIjx3Qs6MjeIA7vbnTQUR1bcVvjGT4ssEgEHIVuZEJFIcbIQ2nckYgx2iMnDDkoVzdSGnDs+BI3Hsqdj53grgGRM++uAJEL72IBkatW39VHa2A33v+BieoEnw2I7HjkiCEzyVnNxh53xkZH2qttqKODgHwhHBsr8VighjN7JOpGhS0ypDUrHH0p4UalbDKkJaWnwuQ8MFyPrPBQAI4LY2pg+HACN7S8UHEXhVZ8Mthi5oUUFFRqks/NxdHeK4KzBNSDUNsGhRaK24AqZupMkXtRUBwwILQXoDFdM5WmGgkdlWhObXemSk95976lNbB7oh/dwEIRuVLMqQ8F33g/CtMEnxc2qhlWG3JrGcTigD0UuLNaFGhMUdmD4LgCoSPlaLPGBEZzk0ZhsuBCAhtaGNYYW8LK062gEpJhbD6PCZsgVtOX7WHch/htPZYTexEjQ5XTxtbQJPDlf9tbB31nkQicCaMHICVWBkrBjESszB65YMhskFt4jb+Pcbvv/4+Kb4upMIHGGezRyoAWELSJKXSHtHT1uLra2TGkvnKnps+9FWO3NN1df7lnRXBq2txbEb4Zx5QYSqirkY0csxI1kC2wKJxxwFHIV8KqhvIP2NKU+qHg9EzO3FzU2jdvm6fl3MQs5HmBC3gW8rzAFbx0arWet2rbmypfFsse43a9uCOrtcXi1LI9b6VZX99esz1YFFPBWheKYhtY60IRbIOK9b9gGzQMORPlb3yzWg7Z7KRk6vWLKSTD1GWiVKZsDtjUypCho5gkg2sdbXigspVMmMjwc6ONTZTD3JQN2vOSOXcP73m1qK5hU04ljq5aYBC3eeE6BCou5UbHHBut49ooIhcPB7Y2YFEk3WvYbRRJPghI1Rg3u7Ylyo9o6oytVTM60bAgmUj2QqVcW6ZsFGsxJlvqOtVlZIiZOkfFGZkwijVlginWVLXAeGsqdIj/LnUY13B4jWrHfKVOKVd4QNjxy5LUMfmCEXiVfVeSOj57Ce2BRrQiv0thg9CYY51dDnT2QdEdkzZY39cBUoiMqCZsC9vbd+N6om4Q3TsVlZToDFFTWMiow5cPR+UAv3NSO4GJCpzVrimsSVovEJWpXOaaMYy+OdbB9UAH54OAXrlMF/vXB+U2XewEgZAS7QQqKCC8U2dgFLiHpzRFauPj+3qhYtIndOn2TSm4IeqeI71536IRmL3bv3MiBowBwB9aRvxBQMG63oL+8sPlxd820j9cfPjuu40O0mXc/OeHy92/y+7fcft5ePm32yznLw+bQbZ92Hzhsnbbfye/+XcqL//enFq3/y79DzZGdv9QhlBlCNWj7B/6n+5/s3uIu4fth5cu7bC3SJeudMOnWgdPfSG87VOP/PLN7dP+b/EV5u6pPf+t//Syr8+6fSrd8G91i/IVs//0si+VNHiqO21uf7//2/NT28m5leLlm/13Lv3zG3ZPPb/d9mn79v03t089mdH2qf/05Zu7p7DTs9/J8vV926c+82n49PVvfYvCs162aPtv7p768Kbtkx+ifH3aoWxl2r9999SHzw+eXHh+6vuoj5bcPtUwxNw+7d+3e2rP32zb4Rmf37CV+uvT9k2Xvb94N1zD4A3PT1//1n+6f8PzU/Wvnp7/FsrwDbunZzm3n172R/rtU6lDlPrqm1up99/s2/L8tJmRi8f5l81U/nj3NL9fL5b9LL673kznzWd/WN0+3c1nHz7M/nC9vZ3563z9sJ3dKfsWW0uhxZQ7t1kvFpuFrK/e0q8YL1ibZeB2/nCzXtzvVoWL312v736efVnczj5vlpDZv31ez+fL2cPNYr68mf9qNv/7/XzZv2L2abWevX7/r79ffr/8zePj9c1Ps8fV7PGn+ezj6vFx9WX2sLidz1afDn3/T4t/zD/Mgp/9ffOf/oPf96vyh9n3y9nV7Lv/nH96/GH2+82yOOtjVGbbGJVv/nR/d/04H376uz3F0uyZYmn419+u7u/n629/9afHDfjw4//qiw/2n6+Wm6asFzd/efX5b/Z3WrPnO62Z+/aHm155WF7f7y76F7evOaK2ZeauPz6s7p4e51f99+43cBcfHtdP802X3ayW/Vr8z4uHxefl9d0gbOfAfZq/eOll1/fyNz/a5gu+2RJefuMP/mY9v73q94TBF8PBL36Z3y6evrzxV738KPaby3anWsx3bXpbQJ324lxBrEBKaZ8DyACVD+Usen6FbRpG4qbsyqCtSrRfBtNpFnxLx3RqW0eFcsoMlXpI7ip4k6Sx0AR/jPQiipW5vqsrKIeWc+97l+e8TGMdj3qt4NnJea3eta446s7SWgqISuiOWww0r5Q4LoQLTbAVkk9K6lAuRay9S2Gsj2o48PPBCtfMfa01GImsMN9xu31UvFpaNyY1Q8RUC+leGl2lOO9SeN9II71LY0s251yK77LcJNeS9iqnuMy0HmEdS8MeOUguERSvmCh75H1YVxZrLx8Uh/GN8tSSHUZdRp0kxhaBUJXipsrYbsKxQBodRFZZYno08iQGGK7nK5Zi6ZfCOUPp2sjzGGANSJydP7JnxKwcUbQhWJQDgKR7pb4mFgjFA3dYFNPlK5cToKD0DgVRBM3uXQsPyNbsMrg2JyEz20HRpEmpFgR1buKBsVGThfI3mC6wDdU7tNcqn9QMLYeD1DJw4nj/nuFMUDj7yAyS7JjYSMznCFqz6NTLdIWffczwm7KT149ksmMW8j8Om7aZN20NarZM8x2MSFaYfBFoTFUxOzW+yXd8nF9/uZovPy+WbL+9TM+Dtx12tONhHZWOKYtjYPAmK8R4WHiTFcNlKrdjlL4lqqmwb0bG3fVHbkCURKW6IKOcq+1uDYpCDtSXUEcDULBBIYrgItigkB6x6u7puB4rneGcD4+sQzev1EgbZGmBPVpGmhaotF1I5VGgGULWDKYifDs+kJkK8JUZyLUI9E0QMOW+Mdca4ByFUTQ7RvhG5yO7IxPofZnqgxwxbAr5cHwKYSliI3ZSo5yqabx7bWufKQsfqV5OPDA0qQYJZWCXlePTv3GcQZD50apAcYQse1iCWWYU6oSK7wYVjxPol5MF5QmeFoh7yQ1SzLDzTBrICMBH2uwGgRNtd5sdlGkos4MK7f9N2HisTJY32PWCTQnxgjtHVZHEaKccF1fTXoEDQTsCrSTWdS7wyKCaodT/ZklrqJklzPH51QsG/oPV5gd/u2bpUBwRguMjp7DCI4OdXHnyNmyhc43JSwbnku+4Mg3W0gkRK4eO6iQvZFBjqvR8xcdsNZx3TRYLKon+ujfcP6tPnx5+Wq3nV/dPLEWZ85kwLAqm7AJQMJbjSq70xmwqudEFDTPUTIJEuXLAji/eByJ7vuQgiBx4iwJEjnxxPRBZ4DAHkTPP6Q4iI3Or35IOzdaDi24QGMwzhiwQmGNaiEIBORDZqbXvMFZCFz1juWUQNKhOpHLAiaTV33YYrXIg1ZUYULCPwSDS+EpUM+DXRSlDOdsVi+xA90GkyxF246+TqY6TG8/3eWBXz3lgOr/xus/pOix2421kyzTASphzs14hYLbsjcRXxqoWFG+1NgsqEpfNEBGTS4m4mzXlynScYsW6lC9mZcpYSR9rHgPkq1dZQ0QoMY5x7TkoQKVSI4bgIa6ksIE28lHkyF4rjk3FTF2Jg5oVaomjChBKiaPQlGsT1IRQQhwUdxCMAg6FsYWAKRxeLDUczjjzPDJEoOsG4Slo6Ko55ZDcviLVz2lD5+8RcCFUE9t/inCNjo3wUlRj33VvGKy3EV6bHlyQF8WuVPWm2NrIIEphH6hJUOkoa5/Gh+qx3EvHF60BmyJU2gGRg3J6qUq9VUfEv/hCTTemKHnm9JN5mUHkwp86rOnD1CXnFrLaeGSs/Uxt8sYhO/4iATQCmnBHga3rjT/tOSuVfRDIcsRPsMNwFgZfwth1WPfwaYEoMpbHEF+j2qQIjedttfuk8VhG3/iuEyvsOPfeOkS+c2ow8Sle7tWKOqd4eVCDXd++fDs4Hx4XN39hRZCs4edxPp6h3iXGO+2w5CLfCbawg7JofCcElboOg64KNcCz3ICq2crKPpFqH8TigG+IpoaMN9Dla8x1iL659g4KLmXHqmPM4f0Of2BIAfQYwyieY2nsb9bPI2wWTkjkN8JuPRGM0w2xxhlIHHSJ+RUzIojMXN1LGxROE9d4swhTC0HE7ElkxyMb8cGeomAOgKqPrJFE2E4aG85E3E4ktcuTyDkoFtn7zMscMJnZ/KcyOi4qUc0JbX8jqjmBmIH24oaxpgfH+LFROT0biZBG5aQymlA5NYs0QA5aH4TEJnDaBsUqBaGRDc5bO1xv2HxzUf/QU69ebalXT1+B2BNBQN6RuhBqOYLQsZMsdHDoEVQ3ntzpmbrp5FYf2awOT65LUciRQqGpiuoOy332UQgqdx4TuMhnOA8KX+UTVvz2hPX/XdMOh8hm9Ps2ZolhETyNM2goiptgHwGQc1vy0ru8cmfihSAgB2Uu+IQ4iffSQ50guIwj1r2CyxhELjwyllDjk+A9BoUWfMlQpoQnAooiiex4ZChvxGeBPA7TMxFXVEhkPj0S1TOfH4kiZ57jDtRGoeO3UOTKI4PaaLw2MOTS8SFXKLTjA8VQaCG5BOxEorb4i0JA6ChwB4IKSXwoGgqdBalBhRRBahC68mkxoC3DsOSQO2LtBGhMIUS8kIsktBAACOq6BgEa28kZgpxMSp0EaFDXWXBSGYm1nokKspfRwwZppcP2Xu0BByGb4MoAxR0ECB1xo4XjAjbFjWN1ThPC8MChPwj/AfsmjfWNQmcDzqaWZM8H2vmZ8hKgqEU6uifp6N4qeb8bx+53W1PuOYvE+M/z4Dgo4zQItDguY8heUU+W1BOUa1CtJ6JCT1+kogJdUt6VtXdl3lsE5fOFrog0pM7I6gsQC08cRRHcNliLneC2AZGRy80y1nInuGhA+QQXDYgcldoB0hSnqq7X901xIq6nkQrjObBQ5CqVLRAV1ARvA9YO3zG5f+Zs8ooXB5TQC8d/bN/3AkeIw3gCglfcOJhR4RU3DqhsgSfEFQy6CNCgQgTGEFQhTYDGFELQ9byc/0FoJ0BjumYYe8jVOgjsdCi0wHOM6lrI2EShlfIaoEKKEF8DQldBalAhim8H2wsIBh/vuSkjxe0YbCOBidQJY9t2DFR8C0b+E6SAHLCXBNpitJey7EACTYJY5NCZN6xINz/Nvyxurrfhd0syVTrESvmx0MY1ChVbSlJH+qvKWGE9MSpH4UYKAvGOgzIzgxKCUzFktjBHfC35yxBd3d/P11c31x/vyKy2kJKaS3hCGbKcU3hCIZSbT3AEVQEaHEKNYVx2RgJ5yGxG6UtlkDesEg+ru+v11f31ck7S/4ZMZ5ZWQwbD60cJQ9VxtvUK7fndKExUST/equbj4vP79JL0CmxVWdeJqKMXE8zUYxHAmgVWKXuuYVs7EVfkI7cMFaWaHbYMFTkV9O0AXS3urtbzT5ufrX8mx2bxcrCyNWCgalwvMA0rXxwls6gp06ck6V0SwUtg4pK+dr/DxlfhkTsMuTJ1+KwK2kWtfGciVqr2nYniiLQ8G8UTl0A2SiDS+WyUSJWUM2GSmgfoOwsy81YeOPyrYJuC478KtVptFTQBzOqi1qkhMTakEyo8YV3UvOrR8BjdQiAYgl6ExwZBi8w2Bwss7T0H9I3sPS1z3gs/IP8pBwGFLSdg2q48sseQG53N4rFUtEgEBAUWmk8NgaE9HXIBQwc6pgGG5rNDYGh232vDsX0QkU8LgYXl80Jg6Mrf8mPTOzLltToT+tDJIRJxPi/QoEacEyrNgmILUQUodBCgocU0YlW2Xi0bB2ES46FDZcN2uxfpwoivPjomNPZFXIVEJ3LxPBl4l20YRKiOliuc/j3DPfACLmkLqrXl6tg4pJh7XHuf0gfBPkfHZ4XHp49U8V1TC4lxyKKjIUsliLXRgHFceodrVjkBmvpVToCWaREohg//viEbnHyAA3fYIKSPgDZHUM6G2OAOUXbthreFIXsSm09P6+X1DXnvEEOiTqgB7BEqy8RDHCwxFPIkOjpDQ5UO0l5wGMdB1M/RlfvrS9KY8BRNzx42KrJHZKf0ryUf683oxTt6b+RlRSwOyFTE4ZEco3iN799Ub73d/OO2v0Jfffm4WG4JpbiZCtH4NLMTjOZlJQJcHEXY/HWHpkA6CIglgr2c2MbnFJMI9oIL1kSOEEWPY4doonjywOmZaEboaAz8+9XfNsP+4W+Lx5ufyCGfhJRoD2VaxhQF6IhBJ7WgjTcSZGPKDMUg2sWFOv9Yyy4ThFPZod34iGcUm6Dk8R2L7QRsS8GZvn53Y+OJIODxjtxSCAoe71nsJJyCsAVhEA+zDcAByuU8j4YdqeTDxYfv/rmZSLfzfjBeygSTP1xePD3Mf9yDPq6f5gflLXLA0LHt+8juxcXlwF0qxOWAXarE5YBr/DvicvLr7fHAzz25TerxOeYCwcXngBuOFp/jk2JsavE54swoWTmKFaldRXlV1ppF85oM33cQsTFHNCxoP9ZOPUka0WmxOvXQV99M7vXi8acv88e+DrB67qtevVksVvOogCEoySHWKB0kpTlQk/QubRLULB0JM8SGHGuR0At44KxUKVB4wjX5bFjfphUsHx6vl4/67Gh0gH153dqBF3W1vv48v9rI8xdWCNoa6AwhPq4Wd3NaBwLvtblEN2jnt4fMwdWBoUwK5Ghsypkgg9hZDpWzFl8i/OnFKEVVUQVsKLEwNrmuEqjr1NF1lRo1CFPnKJsWFVtirT628dnreeoCeQWSRzyeiat89hW2adIn7gqkjgqfGXOyYqOkMMZRwzArg1nBgdckK0jrOteRvvvRvnNOsnywCtRpWMUMuhoYlzdQphQ22LBQqDJs/EEY2uPcRiEzFc9hwhS1bgaqQc4pBYJid7U+Hhg9h26qku9kd1H7xkrd/EK660+e2wCxtc0LlXs9lrOXPJ8hHjpM6khHXaPIiQ4VR5EzHXONIhc6UBxFrnTENYrc6DBxEJmgNGoksqNDulFkgSU+GNlGKYBBhm967MjmGbCSnL47gJgPAibV5b1r9Q+XF3/bqLS/tPkut8t0Wcpl+uFy92+X6vah/+zS5Th4KN32ofrNw+bUv//3qz+4svt9/4XLzRFy++88+MP2BZd9zbyXp55dc/vUv+/lbz3u26f6jFK2KLENn57/1lcifPnd7unrG7afXvaZetun/veXPU/yy1Of8bt9qnX4t+3T/nf9p5d9Mln/tMW+7NM1t0/971/+tn2Kz5jb7+xRdk999sTg6VlL2+9c9tfpg6f6jNJjX/ZXo4OnZ1Vv0fa/e356/t320/3vdk+9+bR9ykM5407qr5jbp37Y7Z7qEHPbtzuUzbhaPM6/9J6cu6f5/XqxJba5u95Mxc1nf1jdPt3NZx8+zP5wfXfX///v/v44Xz5shmn/8H+v5/Pl7E83i/lyu7f/db5+2I7glH3bnMBTaDHlzm1mxtd7xn5uvLxpM9Rv5w8368X9buRf/Nfq4+px9un65nG1/nn2abWefVnczj5vJs7s3/qfzR52L/vV7HE1+/i0uLudbQy02e38/m7188zP/rJ5z8Ns9Wm27oEefv398vvlH9ebVmzXog/fL2dXs/9cfV70Nbd335m57t+/LJbbv/y29+6td99989c/Lf4x/zALfvb3zX961N/3pvwO8Ls/r+5/mP2pvzidbS9OZ/EFc/fH328Wkee/1bd/+912IVgtNxLdLNY3T4vNW/3bL/3n08fNWnG9fJyF7u3f/uO6p0T/+du3/ub2r9cbZd3ucb/Cfr/87bMjc7Z4acdrxXyY/fl6/Xn+OLv+sjnoPPZKvXv1hQdDZwd+ePPNlzaj5WF5fX/1uLr6vF7c7iNCnol/NiPm+uPD6u7pcX7Vf+9+Y37urpY3Q6lH215ePyw+Lzem40t1xK8CXu3e8WbcffP1oVjf/MT3a+52GV/Md697s6YLxXQhTnWeDRnLwuSZgTEnHs9ljBnTPFMwhJt5nmAIVyC9hXCFwkUQrpCchgE7pWwRhuwE+iQM2Qu8sRiywHYL5Wq7KNSjgYCTQBkLAQs0t5gqCq8KDFihuIWABYJbSOKB4+Z+cT/f7a+9o/IYB61RN8S9gjoC0Fm1wAX6V6yYsED+ipXNFfhZsUqNPDDW3wpZLVZKS2DIwsokCZSvEDARmJcY4KDQZWF89jgwtbwwCWaZkjjwzkKMB5bnq8BoEXkCBQiXtyIDRgl2zO/ujznHXrvdt16rz/Pr9dXffprTDIwVDS2ultIONo6vlAkSLaDiOs90RhSIEDCBBWsTzNEEKqU9H7IxwMibbJgKEm+ygbmcgpUJ5u0W3mjDBlrlCwdgWhbMTGhcpI437YJ15Sqk4xhQnoeypAq8XQV1CZHH9XJbDQHTpfgcNa+OczP7I2ZhfL01fbr7uf/l1t929WndQ3LXwi/TsMfoFXjo+mT76v7FN6vl43p19+PH+U/Xf130aSv/3Lzu+vbH3vH98OOX1e0GqrvcfbaV6seHx+vHr6kshyRg0rC9PbGAuBCexwvKB2FyyZ5xoRQWIo+sUPJ6GheTN6j21pusmOcTMjGMibSzSqkq0bhY5lMWik1jnVB4YEwVL/P04eljP6n7r1oGUT401Ylsr701ATWaKe4emUYzpd2Hc/AQlOftEqhUMlPIvY3IKNQYMhJXiULt+60Z62vBSYP1dYFzQB011weZVKQxgSUcD/KqxgRPFDBRpd1nRtVEjfY9MDQ4Kl+vBKraU/lYNCiyfpA4NdJ1wYI93HOs/RosbRxacQhOZk9pudC4mJYraZikV1Lv7ZL58nP/g6flgixYRDA4F6YjWkfjQgprfKga1MGDXCXQFwblHw6yllCfFYYrFMDE9CvcCmIKFvw1mMSFtwyMJDOGqLkNGn8IqvG2AKRH1wn8IBlDdqo1UMCIAa++IIMvCKrzopzWeeG6SFs+qBKT4pWQ8rocwfW8t4bAsVZ4ZHB+vEzig9xm3wT/W8o/7FJ6xvxx87fbLc5D/+nw6bt/XnxarB8ef3wJRHvW9F8X68enLbvK1+Pq9htX/28fj/Yw70F+HA126+PVdl32Njpu5C03P81v/nKx9ZTd/7yR/2n5+OOn9erLjzu31IdP13cP819++OWXg1qFGBLqkdF2SJnPAYs/zpd9Abfbr6F/Xz/ea7X/LqnTQWt3IZBb598rVpv/6+JwW5nIpucGQwWZHBPY9AxcMWDPGusNjMQKorUOJTQ5x98Hg5rms11ATWfRYHfdiSx252BvQOE6o9KmNagz/kIY62Uv0OODyI5HxpTBREuZi4AR3Eh7uePrwfmaQvllqH5NYdHHLBFx5TzZ6sQfhVBo4cyCQhc+gA8cusIhxiAccl7gOTRSbl0Qzi1Yi4PAaohN1iAfWMD9NQTaswsOsOM03seOQm93qnefhYjorP15Bez5zCODPS+cT0DkyiOD2mCYF/zrPXz8LDgIvzp2y/Z8I++6g4tA5C1gh0VaR6EeOBiAr9rADsqRdYPgKxLfYfi8LYzqnPe2ozqnbVxU2UKejRH37oiwqzZU7MFkjI7PKwLTPHiPOdhJid0dnT3zDm9iKchvANN2GL7tjlR8EqBBzWdWL57VfJHfgGqevXt+Sb1B39DkN4Bayh2aO2NO/Ayn35jrUFYScEwwIWbDblykzVu0c7McBwl3rpJzA2bIFQEaWxpypS8eYIU0IY8FUwhDiV04hRQhogOFVvJvQIUExZZ/Bh8LN3VMNNVX6IDJnXhkjyFn1sftsHh/V4pqgENh/65U3kwGtc3HDYPaPk5efczPHU7l5x6EYqFnAKw/iFCsNtTaQazAYwULiw8VBsdJ5YOF0XGSZQsdy0dwtchvAOd/rYKhDipeoV/ANN862UIHNd+c/AZQ883LNxZh4huLFuTDA6reCFv+1ooxiNYag7AWMCYua3Q1VGKx7MbJwclwDzT5DdgA90qwFra0+E649cCWFt95+e4gnPbuwHeBP84EsG/ww2kZGfh+EJQ1hpVHsegMvL14b1Lw3oQOkZrHkw4qObwqf0ZIGHLjkaG0AO/4TDpQZufocw2W3OGdV881UHaPdzxLBKrtqJ4+8olOH56IIGrDxh3EyjxWsrAEAjJwIPLxP2h3NixBzz+Le5hlSAj2AVuuRPuATfe6hZuntXC91y1cLEnLe9zCtYa7xy1ca/Z5xcI1wRQL12ycbuGCW4BvvAMe7Fwlngecj0pADzgfg27a5hObtoPYn8P1piya+kOdfzi++mH3hYfX/35VD/RoldBvDMjxQqH9B099tLXfMm5/ZVm9PELGSsGm7pcfjCB1HwS3dsGGjeDWzhiyEEMBysznLKIyV9WwLBjvX1PxM0b/19GeZRDY8YaekYvmo+ClLhZW4E07bJBFwWeNDbKYZL8vlknlo+67zuAbimBYgopXnNag5pvs9wU1n3TfNaj55GTjFm2Dl9+AtiHAtq818RNugVvrEBPGNLqoJcUWNxvH02LAnatb5mjnCgnC4NKQFcscWxqy492xoEKyl92e5UD11rcmJmOZZ55TwzVMf4KFWjFklVfDQfW0fObDLyrY8YKdCmpbCLwAtd1UB2U7lYOy8EYs1tNFMGKNBCJfBCO2WViCEYuNkyIYsdg4KboRC86eohuxDXyDYsSCileMWFDzTXa8tokdr1W3fsFBUfXIDXBQVN36Rd+AW7/WilFx69dawKpi/ZpgivVrNq7IJiraA7oRjI5TxQjGlpamGMHY0jKIi2J9yO3EPmSctsonsvdx6ipfyK6JfLAEiJz4mAVrfjGBUV+pf7GSG0yU1FdkrEpIq6yR7h04GlSXrO+w2ht8fAWm7dDxBdwwbQc6TGpf7tmf6BAQOj782BuZP6GLPJazsPiAY7Q7M48Mdqdg56JCC3YuKrVs53o/rZ0bXKfaiB7LSAoOTp4zR+ogSGoMwpo4TkiZs8EEomO7cXKSHLgvBJdpHyzcuUKSHDgfiVAnT85H11Tj8O2u8F7jMHghqc4cl14oYmWOSy8kztlgQQAzmxmVvLsDY2M8Cy8MYpsARg3vDwssmKlYrS4vmKlYVS2vxg94rACVl41VrHpXEIxVTOdBMFYxnQfPuotBZQfBBDVC30MQTNBgYQkmKNhJggkKdpKc6+axpIdAh+44e24bbxBS3kDFRyEEGNR8lD2mqOajl98Aaj7KAb1wG6L8BrQNcLyvOfEHYT1jENY6FIUoXxtMIOSzG8cH9KKdSwfleHZpSEJcL7g0EDXhPLk0JD4FDVZIFIxqa5wlgWbPHGdJYP62wQQyPbuZVbLQg0KAHhKfUOYTVlmWJ5n2EUN2qvWbIIMv02TTHkspCJlPKEO1LRQeBrWdVCdwOpUTGA/NKWRPF94cNxJnQuaJ93yysHhCaXCcFJ6GDxwnxcmGNzh7ikzH5xP4hiDY36DiBR4+VPNJ9pCniT3kRebxgweFzOMHDwqZxw9+Q4MNemvFqDBRn7mAEZXh3OhqWAXKPrtxQTbcwR6oUX4DOE6rUJQRXFqqwOMHLi2DGBzW2Z9O7OyvPO8f3PsNr8TsyySlmMMgnIepxRwxcuvQBJJAcz425XbDWikGYThEOaND0+5fV8/oz8fqGR2Izv//p6ZRGMQhAYFCzyr936aMUWh8zqqHEkyCEhqVMeTCTHNbauD2rcmXUFAuaGg8NyOmpEjESrUh8kEsPtjfFwvL84cnsMWBIRDZ7EEHQZQjRsHkE6i+0aZn+fRSpz29xK7Ilj+WExYHcVNjZrs5KPHDgzVHmHpwo5PEKccIUzK5Po3HEiGj4wvUoJ3LFH8j56NTThPYfKQLwL2Y/PW0Jn90ilvdHJdCWRp7XApuc6hIXfSdYiA0xfkfiZCnQLbC87YBiIy76JKJfHDgEyXcIilz4mVuGHKmq5CjyPjcyySy4Cg3Eo6i5yvUeCMfIgbBNY61OAj0a+CgDbpPHEthikEuUeMb+IYou3DRNiT5DWgbsmwqom3QjVG0Dbgxas1HJjaqcosoExtVx+Z6VIxUq9FR8XWbkgn2KNi/UXdyg2M0KmYplPkWo+LkxtbQQTDUw/3GKj3uVA7dN2fOHcXcwAW4O3uulpvT57OPDOKA++Wrk/DH+/Vitd59eb34/NNh8y0KHnG0I5vkjW5QdZZI1ILzo0tO4o3YAKXsxcQbsSgyb8SiyLwRiyIn2tREkTNtaqLIfHwHisxzCaPIja+fDUJnIbwYhXZ8kWoU2vOltVFoIt6DnIgMERI5EzPhjCWnIlESzpFzkYi1cq+mzEEwwpnDThKBsgGEZorAkZOEKQJHThKmCBw5kol4K1/GxgQRYeWPjd0fLi/+tnnuL2q/24yzdNnTu6cfLr9zXb10lz2tsXt+2vyra7unzfFk8M3tU5//1j9tP73s73i2T/3vL/tr7/532+/s/9ZHIgz+tvn/zf9a3DxthOpjCzZt+3j3NN+Yh8u+WXfXm/ZtPvvD6vbpbj778GH2X72zdfbfr282NuXPm2/8db5+2LYrZd9ia2kDl3LnNo3+ylzc6/IFdHtj/nCzXtzv9HHxu70tO3u2ZWefdvCzT6v17MvidvZ5o/XZv/UYs4ebxXx5M//Vr79ffr/843oj11avH2YbdXX//mWx+fRPi3/MP8yCn/1985/+a7/vDcUP3y9nV7Pv/ry6/2H229X9/Xw9u7+7fpzPXPbPP9z//fcbcb7+9Rl209SH5fX91ePq6vN6cbtfo54Z+jbNvf74sLp7epxf9d+7Xyw/f73FXtx8jQL45ir/gB3/ojjXj5TtIFzMd79/W36Hp8KDSDB4zjcsDIa2ozFc3iLFcHmnKobLW6MYbqHtZwxXqGoB4QrFv7GqVEqdCwzZ8aYziCzYoCBy4A1nEPkNC5Ht23DE6uPeMBDBdjNY3ReWuRAyF1LmTMnMV3sCCyDSuGBhNdhtZMEa5ZjIi+P4Cn7Abtvv/lc3fagZW/GF6+dCqS1o4FjJMJgxLFuwBgsziwv2NZyR0yzcw9SsLCyUwu8r13WV6rqmgWNpn2yVYudOPakCzIj94tjBSCz4jc+kVRDcOGC6No8MJt0K7iEsX48HBpN5C+92whg2quB0wqJteWCPBS0KN36QR8QJl5xY1AXvMMOAg3Avh1348s4yDDjxrjIMmLiiTBRw4T1wGHAVMuoh4Cbc8CHAzNUhNfMY6gZq5hG3iPsCaNDqRlwiho5Z3RJfwwFKVEt8vgaUpZayePDIp7KRBveMx8L3605Xh0yYwX0iaeidrhGNt3WgfmeuHRPT8cylY6SAPQ+MqSLwFgmWYDq4bzzKtRfsMUjcK+4XFKzVmQfG+oln8IPi6zPv0oGC63NjXS9YqsHbUimobwJSRnEaOKSR4lkHBaiRwOJi+SIlsh4KqCJkSSwslKNXsuabwLquaODYoKu01wHTiLDJQQJXYZOD1FyFTQ4DFjY5TBVBdLcb2TY1inhGKlAV9jms4cI+h3UVv89BUbWV3+egkNpK73NYCHPrREu/ncpIbuJmCHVHE+8voD5p9I6IxQo3+uoC7Gt6S4SScRp9cwGlJzRxM8S6Try/wAZdU0+eJ5tUruvo3R7qbEdk/+93ZUhrjuAC2CNXDDnw+zKILMSkgtpIanJSBWNG5PyqBr5AjREw8hJcV0XAZgHSE7UdnqgHs1OY6eo6OkcJ7AVHbq/eU8PU4dXEuHVmEMUDJs2nqfqGTvIqXEvJ+B/fRoa1Y2e2r5zAhTfKwdFUeWRsoRZCfxwWCeV5Vl6HRUHJ4T/On8yOeBsAZIePFapp5IE2m31ycIT6qJn9aJcnzXpE4UkfUzPhjcjLgvZpo/pUvnA55XgVvFFgtwTBHwWqLggeKRRa8EmhCpGLR6AjNcAn4RfoDoROojHpjGwZF7KK6CzEotqnb2fUu42gUGkDFe5kvj4F2smxE41fcAZE1bgGJ2/krWsH5Yk5ghQhcHvvIMqINNxPPmhjUi13VItZfgGozCKeDcxVKlYV0VqlYlOPG6CW+SozldMyQ3jQcSuEEqsELg5EtNJ+3QwYMh+u5LAEjJTYawyHhdK6lEWTH1RJEeFBvVTW5Q/rpdHIWCC3yx3r93dQGLvLjgb2GLAXz21YJ+YgwmNDMEfapY/qJQknG1DoLECD6i7CyQaErgI0qJDGH2nACVnk4tnoYsIGLrlXq9VBRK8iBguRp/uCmx9Vcx8bGyWp+NiwLpk3+rEVhK4Z4wv5AtlsNUdeUxGtkVd1OxVTQlXsVGzoVcVOxUZdFezUhCELdmrEkHk7FauM4qoaWu/SyZykVTVmwW6pIjzYN7xFiwV8u9bRyGCvN96khertueZp4IgBq8Ys1oktivDYEGxJvos43TTDA6NeDHaw14tgVYOaqwI02OdNsKojRsDQCdAJg3ayVY0tO77z8hsS+AY1ftgZNaZ8p0YQu2QhJvmyI53Wb+y7zB8h0J4oqokPjtaq4oMTrfFHCGhN866T7w1O3f/OyacZsK1ePXtY89EFFdGaj3zYUyWVICQNgLPACWkD4ARwfOKAKxgynzrgMobc1DNHPR2RUEck9LqD5bg8HRD1YtWdsCFCmDI4ArzAugIOAS8EKqPQAvEKqhA5RtlhyYce50d6gc4gtBqu7IysLc8SI70gGnlbnmdDasaMevemi7MieUd2cvA8NNjJIaj2FjYDguxyxiZvSLw9B6WF+iA4mwuGXGRL8eSDtsqWIqjFJr8AUyYdItXGVik6KKqNrVLRy6YopuUY5BeAWo6CQYqtEFExo7HFIfJFe13DkAUrumLIlfbcYwlTPjbRrY2pJImME6BekqN926BeEk044RqIHGjnNpTB4hPNOeEqBqxmBoCdKLJPoEOw8A5rUC+KVxkUWon4x9SdFa8yCK1E/GMKyZ4/0oATMusR/+BikmW/spE16rMc6N8sRME9jDb/zQwESoXZ2xhQ0t4PIp0AkivfHVaI4BTG1g06pMkX8gWysWqNtyL7dq3xVnTrFFSCYp1ii1FRrFNsCS28deqxciCFt059hyHT1qnHsmh8UX28zy84hWu0iiYs2C1VZIoB+6bSdqzH0pB8pYli0F6vtCHrHcbvTnPF+A4DFk1YtBNF1hh0CMo5rqecZo0208Feb0KKK6i5JvDGgH3ehBRXFFpgjkEVEuXq0+Cy02QKGXT5aWrKqzfS03xTSWO8sxCresXxdsq+21vc+ExXsCfCW74n4uBwYLzuDw674skHi1h0jjb6sVUoDOKhSP/+qXssdEE9f6BtjeJpwZpBoVPpZKwZFDqZTwZVgkAog62yoRMYZbC9IXQ8pYzHimw4nlLGYzVSnEop4+Ppqt+QlDJo09RqUmCfRI2xxmOle1gSqGbCH94fnGp2g9ohKWXQPtXN7ROOV8HBDKrNK/Y2pjovOJhRaMXeBhUiO5jRieB5ShkPVnPyqqfZW1W4vGxfBwtRppR5O6PebVt5nlIG7gnB0AbHT1ApZcAZEFRKGXDyBp5SBtzCAk8p47FqZkGmlDn5oA0ypQyqRZlSBlWmSiljrlJBzc01V6kgU8qAWo5yqi6o5Sik6oIrRBRSdcHFIfKpuj5hyHyqro8YMp2q6yNYqVKklEFVImbhonqhKWVgvdAJuB7LjgqJppTxUK5JSHT+rY8YsEgpA3ZiErNwwSGYeEoZVC8CpQwqtEApg6pboJRBoQVKGVQhTT40gTMep3pyhZzyWaWU8UYqXMgqpYxPFiJPKQNrVo3vB4ddVillwLGX+Sh/cAXJMqUM+gLZbDVHnkopY468otupmBKK4+0yKC49FM8jZww50BZfAetxR9U9Xk7mbmRJoArZLapRC/ZNoW3DDPYNb8+ivd5o47BgVdh5czZjwE40C7FOrKpRiw3BGmSv/ummWRVMX7DXFdMX7BjF9AU7RTF9QakV0xeUms2IJVfL1qn4mGqabP0a2XehydZvsRBZ8phKruwsF5Rr7AtYI7hjX0Buqt6xL1BpY+AXyMawORBlY9gYiLHDKCTyFiV0hzHUGGIo3D12cGzDjujCVww2iNEBUDpc7EQyNhSevRd1JD57S9qR+HRSjvP2G8aTcuJbEifghQl4oR3MFzt5H8UGsJP3UWzeOXkfNdJ4opP30WYhqhRNtoxy8KApo3j4DFDwf3RiZSsUXgz+R+GruI6h+E1cx0B838nr2IE3AOuYV2dlgII7o1fnaOgw/CCuWgGL0I9vg5GAHmlAjxxZ6NkYJU+OYTZiybNjmDWEA4mv8iei+KxVnDh8OjwpkvhseBK5QwQ2ezaT+OomHIx4+0gzNB3bdX64vPjb5vnh4sN336VymS5zvEw/XO7+3XPo9Q/9Z5d95nb/sP3wzVN/Uko/bLAWj/MvG7k+3j3N79eLZS/N3fVGrM1nf1jdPt3NZx8+zH63j4ma/XYXEzX779c3j6v1z5uv/3W+ftjKlrJvsbW0Oa2n3LmN4IvNYtXHmPRKeXnDppG384eb9eJ+16aL39z+9Xp5M7+dPQdczT7twGefVuvZl8Xt7PNGebN/6xFmDzeL+ea7v/r198vvl39cb0TcaubDzNXu378sNh/+afGP+YdZ8LO/b/7Tf+v3/e7z4fvl7Gr23Z9X9z/M/ni36YVNWz5er2chP/9s/9ffbj2Gs/u768f5gT8PdPFV3P2XNtp4WF7fXz2urj6vF7f7PeWZUWejkeuPD6u7p8f5Vf+9+8Xy88WHx/XTfKOqm9Wy79N/XjwsPi+v7/rffvWAPqtnH4/2olnXD4ftcFvMd79+y6jMk+hAaYB4fJEFe9jJAON6C/fgNg3DRkpc3I2bKFzch5spXNyBWyhc3HtbKVw8rL5RuEz2TMchExPOccgvc852Gb1cREBlNXFZPSdr5C8hwIp2/D0BBvwy5QhXihP4VJxSkwosHIIjZ0o5DRl6BV+PiaSWvZsMozEmenFvliukOJ4ZLsF6E3BC9sIkDRjhIA+MdYIwRwNGW8WvKgGkRkEGeCZ0IExFTAdEplmxeu1whi0O3JhxFpg5ub8YDIrrgilk3ijlEJOwUsD4JHxxs2DRtThwRwFnXmJMFYWXGAPG56IPzFwM+Fz01NIcO15ij/mPeYkxYHzm+USpgjgRRgo48hJjqki8xBhwBjapvbMrAoDEjCuUbisPjKmAmHGZAU7EjKuMKoi64b4xiw9RNdxTex1RM9xTe10SKAQxVQgEgpAVl3j6QCgkPvHkgVAo/yCBBD/+JIXah2DU9VYLDnu+OtqzCAI72gcIAnvaCQgCB9oLCAJH2g0IAifaDwgCZ9oRCAIX3hEIIlfeEQgiN/7gjiEX4gzIzb5BDsnoARtaQotX/HVRWeuKQPAHaiUyjcjjjTC9SATHrjPn/KFNnWHYrcweyRDsNgv4sNYrLzKmi8afYDGRa8cfukFk4UQIInv+EAsiBx4Z6sAqnAmhwVyFMyGUtU5ke/jhIngIqvAyYlqt/KENHAiNP2diyATLrS+Mid6E8yA0xJpwHsQkDvzpCpNYOA9iEif6eAWl+jT+OAil+BCluj0lb6VxMXnhZMg0EPfgNTyc/RjHkBx9CstgqICnD44oMn/AQ5H5Ex6KzB/xUGT+jIci4zWL3NgwE051qJSNP4qC0A7n5vAjCmDiWzwppedPnyi0cISDllinRLoUUGjhHh3Vh3CTjkIX/qQJqroqp+UDygbO/I5hdDUX53gwjKtjmmEuz0DoiPMwpdX+CG3Ne4bQtXLjfBDhQiQ3ZCVAwDFBL5WxiZzHOea6MV0zsWjeAQP9yBApvGcBHOeV94aAyMK9OzgWg3Dzjq1eVBiM9++Z9kHwvBgp2m4Q+XLk0nm/Z0I6Frws4OZDlKouI5OQqE2dx6CEe3ZsJgTqwi+/a+lkol0aNTWYcJdGLcoKxSoos8CwCsrME6w2DJjnV60YcKL9DKDE8BwMFu7BaRN5hwuoicoKXDGB2cp96ZU+TkCG5AYRMiQj0wllcDQhE1a11uEFqp3ZcwaycPTEZgcRT7NHxobxIKCGOGk15XLVMTE2hdOPcBIF9QNP8/0hAluYEjvP95bz6SYZQeRaqUUsC1eNBq2Fy4KJ2yws4ToRnPyZrkqQT9+fibeusAlGELtWbjkmwnL2MmNTN1daZrSvG28RYnomwnL2yJg2BGpX5zBkntrVYbloRcgRBmWOPDIoc2LtQgdxFbhB+M0xvrP6rIaD618pqmXn/OtV6ptEdW6lGgTmgCTlwezgw9riq+K6Dky97ISsTmxYVqFMFzguq8fD8lBpA291odCR98mjihDi41DorNp0J55elWVL39t3Ds0/5u1icJ0bRPocW+d697690DXBzwQOTSWsBxw/zdMWC7poKaE9qEKE4B5UIXx4jwsYMh/g4zyGzHucUJlpl5ML4OjgczwwbfiOLVkQTPzD6dydE/1lz7o50ZLrO3juFq5zfBdY3ngHJWl5InSoUiPVC6FD6HjKsuGIUSUQEUSBVLdAfI7quwnQIM2GUJQWlJoJMEqk1F6wH0GpFasXhFasXlAhitULQmfZ2ARXQFd4YxPcPhzuJPIsdOOdjeBA8ULsAtibeCCRj9zKOogrIj2kJ96qCZ6dFwse7JjIW/Cg9gTfLtrlWS0rBe58ROTRywkBVHgVoEG1NP6IAGVDeIaA5ytyxJAdb8iDMnvVkMfScHwQnL2gUqIqegRFT+oZJJ90YcMDmZrZOQcnMBHWVMlhJfBJgr3eZF93OmmvxI4/UWDdMoh5Yg9DEXuBF84VWMdHIVgC7PkoBOqjUgvVvFCps2D8g1IL4REotMB+hypE4L8DoRMf+IBuY8nJdwCnXXaSl49l4LaXAn92QrUYhQMONmIJCiEfyGGV5RPOaQ2BJARVoOqr8mEB29SSEHwM9k+W6+eC+2UWgpBBvWchChlVCx+G7AqGzMchu4wh84HIqMxZPS1giSc+CxdEoFL4C6IMytzo2w0QmYh4qlxHEhFPldNz8fLRop50nR8ESLEHAKh6rS9RfkHGXiBkvqL9nwVocAAU4RgASl0FaFBqIdEVlJqJiSoktBOkxhRC8Ba5QkIH+Rhw2iWiRvkYAO5ng4Aq9g3gHsFQHwVydBUBGhwClb9JwRbNqpjImD6abiJjO4oUPoUpXAmfwhQuRU+BCleip0B9CNFTDUMWoqcqhiwYx6DMvHGMpTB4JXoK0kbQo6ewTIagR0+1U+5SQYieamAL+eipihXREKKnGtbrQvQUOJ706KmGKUWIngLVrURPgfpWoqcwhUvRU5jUUvQUKLUSPQVKrURPgdBK9BSoECV6CoTWo6fAFVCJngK3DyV6CoVWoqewgSJFT2G9qURPYSvrO6KnTrtVS9FTYMcI0VOg9pToKbDL9egpbOeToqdAhSvRU6Ba+OgpD+WbBCF6yncYMh89hcqsRk95sJiuED2FKkWNnvIdKLoaPeVPmjQX+Ogp77CKcnz0FDqs+OgptNfl6Kln0U/VK0L0FNgtevSU77AXCNFTYMcr0VNgzyvRU6jUQvQUKrUQPYVKLURPodBC9BSqEKV6KAYtRE+h25gePXXiZUePnkK3PSF6CtaiED0FjlglegodVnL01IkNASV6ClWfHD0FbmpK9BTYP3r0FLhfKtFToN6V6ClULXz0lMdqzgrRU95jyHz0FCqzGj3lsVzAIERPoUqhL4i8B2VuBHWPj78cLJncsTckqHSFoSuutk7H6YqDHjjl40mXeD1wymOls/XAKQ+W0BYCp8A5rAROgXNMCZxCpRYCp1CphcApUGolcAqFFgKnQIUogVMotBw4deIlQg+cQrcyPXAKXdprZriUjJ1nECIFMI+Hd20QQswUuF4qMVPgRNNjpsDNRImZAqebEDMFKlyJmUIVLsRMofrgY6Z8wpD5mCkfMWTBJAZl5k1iLMErCDFTmDaiHDPlsbS3KMdM+ZMm+EU+ZgrsnMjHTHkoPyp2UTlqSGXrY5dkCzxhjcn8zQSopiIY4AmbHUIYFTrxmmCAY1IrYVSg1E6xkkGpFSsZhA6C1KBCoiA1CK0bvODK5TJ/NQEu+3gYlfcsdJUsbG1ddI03sbEF0XeyA/+0O6NX7GVs4nnBXga1J8RVgfPOR/mAgm1YRHjVi0EOKjwL0KBaCm+RFwy58sgZQxbsZkzmINvNWJ5YVKKrMKXo0VUZFD2oJv9Jk/liiLRhDmVlxcCnHKDDKvPIYK/LxQyeRT9Zr8jFDNDeafILoPy2GIWSBmD/R6GkATgAmPiqREodBGhQaiFNAZVaSFNAoZX4KlAhSnwVCF3lAwe4qUW5jNeJF6HUyU0FN0G8JJ/3pBaTUOMLHLhJKPkFjq4kl/w6sVmQhOwGVH1ydgO4t0nBVmD/6MFW2LaZhDpgoN6zUAgMVEvmK4H5hiHzlcB8xZCDauFjSXIx8wXBUKUIsVagUuiaub6C2ij01QKKLGQsgHpuPDKm5yKkIECpXbEoxjEotGIcg9BCDi8KrRjHIHTiXcPgoC4CPw04qovAT4MqRIi1AIe1EmuB6aPqsRZQpmisiu8YU3gVfMeYwqsSawEqXIm1APWB74xfNR06TB+80wlFJg6rjoQmnMYdCU1czQYOmqi05zwJ7fCSlQHKA4hN2BVDh0ELKXmoIoRdEZVacBkFLMMpMhFPlcUm5mFjsfGJ6DsWm9gaHYeduo6vug5jO94OOYj9w+XF3zYfPFx8+O67vqZxuuwrfqYfLp+f+mSJ7VP/6WUfwdo/bT99ftogLB7nXzaSfLx7mt+vF8teiLvrjTSbz/6wun26m88+fJj95tmpMvvtzqky++/XN4+r9c+bL/91vn7YCpSyb5s+SaHFlDu3kXaxsSf+/jwPX/A3LbudP9ysF/e7hlz8cb26mT88LJafZ0/LDfanHfbs02o9+7K4nX3e6Gr2bz3A7OFmMd/I8atff7/8frn53e3TVhsfZsX/+5fF5rM/Lf4x/zALfvb3mcv9l37fx8d++H45u5p99+fV/Q+zPz3dfXpaL25m1zcb7JC73Q/3f//d3UbD69Vy841nD9LMxfj2W3uFDL7Tf2WjkIfl9f3V4+rq83px+6YWcN4o5frjw+ru6XF+1X/vftPoiw+P66f5Rls3q2Xflf+8eFh8Xl7f9b99Hib3ew1d9Rq6eNGt6wfBdoAt5rsfv61HybPLQTR+PE0bFCWJG0gW7OG1AsaNFC6+4icK92W1v1/cz3ejqY9j+Rb36x7Vrw8HgPClPVMC4st6oXDfBNSMh/CUQfvZEHkiFK4xk8MJbNlYcVmk8Hgz9HEIL/AWOKaByNvfGHDirW+s9HLmbW9MYiEAFS0cTq/tYHFk3vWMlVbd4358uvvLsTO7Ja5RHZL3CmPAbIplNNU8uKB6u5mTdclQHWZLlsPVqV6vu/bqUvFx5JO6mHslGnMQ3TaimsYNLzk2ZsJhUNG2vvggMHZmfnnFUpiEqBgsgUlx+2Osa/QqiCUC8RwHWOoSTvhnwR5mwXhlitqGbTpsgIY88vs48vsy8vsy8vuqLkJRSbpstOEOJoSMaCEf18Igcuzw7+vI7z2rxfoOLQ4ixsa02CgtxhEttBEtjM0F50YAxibD3hi2AHhOaDBvQshlwnQuEEJD62jiqSuhcJHEe0ygWJFBXBZo/WIBXymIRuqbmLl32SMpqqtsEdaHQYwWaARD8VMpq43Iir2aCr1X5MOrQqrq6ixpv7F2NjaQc6e2QlJ/dvQmY6g/y0w8p5yCOdBHAmhWMMxZkVkQs8C6A63gmWcHgO7vM5/jBF3e42RZ3oI92HFN3BhcN9m5dRD+Nc7e1Q46tJ1cL3DCZnnaLMPCoYpwEQ6NuSLMamiSFKFQEuSgLUKdJMgJXgo7/Rzk+C2VNfgcdoFc5EsS1yk7Ze1Yc8tBsRjV0QYQNlTeBofBV1QYelDtFFH9kbW3wHFUE20BgRrKnP4rhy7URQIvNXmvKjjSlapI0OLVBL8qpuYmRA5AHtvGO1Yd5LFt6knYxRPa4S2CDs9tow4BoB5XE4CPHtj23CGoAvodTVmquBRjPd5EdOwetOv4BdJQpOsc6Hu0NOk6L66qYGODCO8x+Ii6Pm0FwO5XGyLLp4dTrhFOYaVCFa0U9wOHCB8Y4CBfrnO8M9dFDNnR1n3CYnxof67DXPHO0Xf8LmIiR3G5BDsxifBgT9L3+7DCi7j0gXqpIjyol8bbwwkMN+t4gxgbil64tgf14YVSQWBPev7uHitd7TxfnwCrXO18otepAo6OrNrbZTJPnBtE66CLZ8FGrGrJgt2kmrLY+AodvXiCoyA4cXUDBVetXkztNBuVc/+CQRwiv+5iozgIly6oKoVSB+gg4G9esKqdLvAxtFjRThcabXhWLLS6Qx0MzTgFjUYDpVEEj/oFTITAOykwxUfVygXhVSsXG5CjIUJtVLOF91qATVcNWbDpTYTHpE8d7IGwVJsc7IEwIfirQrDMt0vCZSGqO+G6EOz1lCYqbuxSnqi4sUuFtanBcoNuEMrD2dRvaza+zwDBY3wyVVPP8UE+R8qAAhlemb9j9EYqncvitSI4qPAAnkYOqhzVG0tR6fzFoq108S4RVXo5VW3m9024zF89ojOuTVXe2JVuqqLMrriJKkG64ieqBOlKYC1+rPyPK1HdFOJ0Z9RBoA9QiDEcnNwlv7OG4TQt4wMMwCJirtSpygG60qYqYuhqN1EhJ1fdRIWcHEEQRdUWcDXQth94DYEH+mSqpICreiJmVCKWXOUjENABU0QbDISvtA2Gdm6TbTCtDxofvAAqqYkeXxSePyGDJW1c42PkwSnW4lS1oFxLU1WwckodPcxj28pEVTtck0/I9ZQGe2ugF9YbWSO+60AvrI3gQC+sjaAeaTNG+BBE+ILBo/mcdvuTuJSBAqqHV1C9BfVo2gqoqEfThmiyEX/KGeldN1V1DO/cVDU9vPMTMYh7FyZiEPeOphrACGO9o2MVQFphPwgesrlNXvge38h6efFpcdf/xKZku7z4ZpBeXtysvtxfr68fV5tfXvy3nrZtZ7D9eL9erNa7L68Xn386zGfi6FAGjOLWOzGUAR0eDWGpMnTdz4fplH03/3RY156Oj0BHnletZUzZXrCWGyi5YC1jA9DHqbjavVesZWxB9by1jJHSeqJ6XiCRK82NhSI3mvsQRCa4giKJ7GjaQowM2RNsQYViFfYEXxBJ/OtDPAVLtoGdTkHubWDnU/BkG9jlFPTeBnY9Ba31G+Lf0vW8vyWBbL4fPgzodv+fJUnlm0aofF+T6ypEvm5zLu5QLt8/zh/Xq7v505cN9MPM1f1P99/4/Xq1nN3fXT/OZ/4bEt//sfl43X+++9mJuXufXXSf7p4Wvc9tf1ey09BVryGNyNc4qA24I48S9h7+eTj+czxay4vEvCOxbAbzCRrIZjB3oFFsY+S6Y0opDGMoU8H6PfS3DWy9dTUvZMeB+RggWZnRLc6Dv7caFsam2shkcRHWDMkliwdWDJlZj9Pd3vw0/7K4ub672iyTyyM21oGLjoHvZreusTetI4oe8sAeJ8A9/ntLCQ1cFL3l+oK7I3LEs4KdihntwtKikbEGvh4NSVQLW8MQrmKuQvZ7FmxsSGJ893GOoWr1lV+9jAnqxyaYG5mhAZ9hbmSyBtSAsohEPb32RpIP9vgiZskVadMsGkhiZDvWTLjAYrZYIA8ulaGwuNiFfRB9pBgHcINip3ZM/oeJQDt+vYJuspka44EC9vyhHQMO/BqRSLrY01KXxjQV2Wqm16g8SjSL2of15PZhRO27YjSi0UtjJqlnqbWB5Z+lwFkS2pHVslLMqQEeLXsj51vgd46WFFFjw6JRTfxCYoy8lHkbChsdBT2bjnPFnpZ1M7WpeEI70HAzUq6IFBCOttODq5MlF+9TqwZSZG0g7AYwJxYXuxNlczqKyNJKgZ+YqrWKVK3wyoOxcXbommgMreL4hcwY78VPRTn6LyBJRVcOZ9VhS+Bi4SxfM++wc/7kFlkp/D0ARsJap6TsLCq5BiR77dhFASOQHSRHwFbVAeR3dnn1sDfcGPs1CO5wjAo08uumNcFqQpdKs515Ki7OWqbiD60VvVY0XHy18WukJ5lNR1ZMi7vS8WuVxWLpWUPIYbXFWqCBsRuEFqdkxmxpUlbPTK+nkGO7FWG1wPQhuMzNYQv7zG2Wy246Ckg3HXEl72B30dIA6lR3yUKIvL2VT39D2iV+EcPSiro8KRlkVyYlg+zogxhI6znIZsCNrnRqo8s54eLLHMujARWv2RtH2E7xFQ6kxwzwgmdKFyejfHRpMqJKl1Hbq1jtLvySmVnO0pEF1JSNd767bAX0dKciRxwjI0WtMJQikzccM4gcpqWjxAsC75mkEE2ThmMjWVR5yzFjI6TAa5Q5hutk9Ii+TUfq2PErTLXC6hy6pljkaYMYDNQo893pjbIgRMOCpJG0J981kKY1nYoVMY6Qf/KsiCOUn1NwDbLhHY1VdxPxQSbGDrdSbW67b63Ur3Hp3HyIuH0JEopi9i6oqzAZd6ESIcLTjB43Dr0ZhMwHg4C8XxGN27Vlq/QKajLERbkc2nNzx7lUElO20Psx7lBwafcdyBnp6dzVjmYUHSFYsDo66dSDSkrDkE0UTocFQ++zEIpqjdlUJmPOUwI8UNpT3tfvzfwD1L3vreD/7HhjcIIchuz5pcyzhKDswhaGC9sRos7Ic0SZ3ZHQtcKDVJ/EWhEkiqxcBCsqTGVF5SosMJjXPrcTMBrGk1GAhpNTgLJciR41riyXagn8Uoh5BUtEF0ZTNv7OwFue1SKe62zA9xD4jVBqonYVyBZXGo2MkgHybCOgzIOYkVMTGPpJWf+qWH4QpQONwlKfp1rqx2NNwtiwrxmGsKaiElXC82iemg5RCDixqMscHGPirVuOJhihp0+UGHJmwks+SLcY3sEQOMKUyXMCjvBjjhieJkLmzeDM0mBOwC/oWp2SX9A1wWyE7lN8Nx1XX4fmefo2TooJrzCV5cMcWW9M2fhsT19PRH5ZRgFVY9FsLZ3ciXKbdbzVCPK9dQ1djqxWuw5FsDrCTcs5NwgGeXhcra8/b8bh9fIvx0wpkP8xgMwdwWK5cRFF6CwEdDvZIQypmELrqZhSB1IxzT58mO0Jk37TEyYxVEx5hIrpj3ebnt8Af7xea0RMFedh+u3q+m7WviFfMuiZTsyz9LWzdu292rRXo1WCryyhOULDQi7Y8D5mnPg+Ypz0fs6Y4Qlq2GOUuTt29CnHWSkKyHtkRbyflkMFoGeCAxGPu7dlfY9uSHWEpwcldPKjhE7QduaYZHwXNHDstEozJSeSB+qkvBTu/SQd8TjPEz5lxMojdOGROMoNBYaSJdA+hCWsxyVkiYU58guCV9hzCgii2NCE81GbzRhZe9LAM0kUhe6uZZLd1Rd2zcokrdRJ+TJ8o6c8hEuwEFMUHIGOA4HUS9BTVUoNp6D2OI0ZggdHVktzh6mekrgiFYX4CkbHRlOhl+k8Cf+VYzL22ehIipeDiI20c2VPspJG/nAJqQ+uvm54mIiISIodI0ZQLsNvFZOQe9VNs9iM1mGvIzou4O8tXVRx2cBGUBPR6xT8WI5KhmcJshyVEJ/oupEYmUPi5xyoDj5lABOYP2OCGuaLQ1qMC6m8n3nj4O6XKm1NmTKqUw3r/tzRBgCog6yeL7FhkEWnDpaonkWvDparPoibPBYP/lXgX45za52WmyFnHtiTxFrwnAgkqRa+7Ydptv3c3s89cXA2lU6dTZAOizxZob4vvDcI1Ys6URPJ4MWhQ86mwl+IHKcKkIdtybTVAnHrlsIvJonk+4KNgERSfZ2WcgJn+cqUiiWWrzzN6lfRyhkW1USFLygNp3aN6joGjY6qunrAMZLF5aaQLGAceiaZwODFrE6ymFVhCpeTUIrlEVKLJkQLQMpvqEfHohfAicQqR2HRIm/1WTLKk6+cljbMeVIHRRU8k+xh3LyGXD1N9LWCecpdR1seDSNiEuZaY4nGZJKFOMI6ptMr1BE2Mthcsmg4CEoxklShy4Ip06aKWeF9Q1iE5zfcY/hyAKpR9hhhg8kJLiNQNU70zYK5zWogEJjf7AKfzOEmMYGcUGIdKoHrhNAhtHN4vy6KzJ9C0R6v7ydliCPsZ/BS6P1ES6FH4/dMGgcPR/BZjAfei4saOEbksCJwpKiBRWCysxpaBCY8C8FFfprYXeeFyQzqsIKHKJPDwPMnT7ADAnr0NNkR8LghmxXB4KriQ4dsKeVpGE5MkOY8qwb1eIoOAdE5BKbcBtE7BKbdhkobJFhscBDmXGJJ0mRmgDjCd0bxIQAiC1MxsSxouEGSJjJIIh3Jh7IURHkSg2pUo/nQAcDH88GqEd1MWEqvY0OKuIxhx8YUeRKePLgmEp60fiMJT+66mUszT1GEx9LMB5FGx6IperfFNkf1F4CebST3fYSTjZzahSVmI/Ezy87G9RLG8Jq7dyR3A5lH7h3J6ID0XuNjBfPJXVbpa1D8OGVGt8vstulY+dl9s2NfIM9e9AXs9PXsC1S3L9jHRZzAwbF0bRz8Af/LMKl+M/L7pPpEJNV/TX3/j+s1lVJfRlLq/+O6p8D/WUqn9wXOpv/9erWcbYzrx/nLrwap9vf387X55z2fQM9KNUtxyoz7jzt1/G+VbZ8t2Hg02x6FhXyJ8f3cAIeDlmkWI8Pdm0EGjG4svx4mbYfaV2lcqDuI4gmDNHfgGo91mATsZuG0JAxfJzHpxGU9K1jbXibckXojBqHC8ex7eDfCTG20+c2CNUwAeoSDVKo8+eFxKglt1FSaTgzUm1D/JGCEXfTagCXXOxo3kkn7JyFaMLlJfAApWIw4UY9mClq/5/e6SCbh4+zTkgLR9EBLARXco63fC1Mmnjhtfg+cyLz5k5I6BE/j5hMnzkN8DtKSG+I0pAuDuzJ8ockKo0vIEr3D8VT542uO4SAMvP1ZyGR4fM2RdBk7etU0dDla8acd12X0vEVSTm+RKKWBMpkJDwNDgyUmerXCEsIzjYtRAtBkMlCobaRvoyE3cWwnpo6QRmWi762hxvEFiKCuSH4akos0EUkFni/fLNjD3hf6UIj5hRN/KMT0y7tpMP1WfmkfIfHQZhFPXo11NJFxH6iezkLBk0qm2sPAjcyyPy3HR448MMY6oBiuTilFNrjxGq8Z5w7WjMuoxeosR27VqDbG1ajYrJIaC0qGbemgON4t3pE58XjxRwxZqVjpyHz40/JtFN4uBZkH+MhlF05ukhWFwdRJVckKGsXsjBjcwhMiOovquFOmudTsip4orWZXz8/zMJrFjpsw4fQmTFXKy3oyDx5HDmQK/GmpPJhqRVzSfp2GO6M2GhcKP24Cv2E++YrY6NMk2Do/Dc1GCxMxmbQ4EeFIow+UDosExhPlm6mJsTx5+OY/kRnyMHAkk+PxlT5PcDXa8YdKsLeHifQwNFhtsFNMYCwQvlNs4MQm05+WoGWYWn9acpZhav1pOVGGefKn5TQZ5slrdCuuE0zZzObAwysKpk/neOTMZr+PmMiWPl3gbWRQNsVUBaEVW7WwKeunJV1hUtZJwhUn8DS100eAuTYVPYvvpmJRGc1iH+VO8Z5fkJqFFfiForG56jByZdPUR5YgU4N8rU1bg0Jc2wjfjBgOKZS7RTUuBOqAwyTw0W0gGYMQqwPSMAQ/ES9KCDSww4AjT73gT79ehzQR00mga0ahiitTMdWEOhWfTGjs0dp3YPZuRyM7EJk3WEE9R88jdyfPZncYvY42rfBM9iOEM1gqOwKNdnkWyi93bAI7Dg0Op8rvKlh8fORzQEDSj9Qp1SKVcpHDFPbxC2cffxnJUxcpdFLgWcA8m4WOX0aJqoRLyptqEErKg2pQJphnM9Rx6MAmp5+Y9yYLVmxkU9Jhyy2d3nLLSlLHAeUh5TOzMHuNDINhyvrIWmKV4KSCdeo7Wy5MWLPlBV0+zJYLQXQjbD3i4BOOn+DELUKmCDhzi3D+xDyGhc8WAek7ikA+Wk+/2hSeeLRgNYATDYyR3xT+agTt7EIfbUFd8LSjoC4EMjVseFb+wgTUcnX0yRajbXfV08gZROZ9t6ieo7Dy1ymSdYXjJ9ovmYdGO0axjsFxqljHYKcL1jHm422CdYw5pht6meIt933jL1NQ2QJqgJmyRd4cBGUTrjPRzlbcOqDU/H1mwPzHRGxPIJHxWeUpZN/hsyqRyLjlGklkPk8LY37yQtmL0GHIkWbgQbWReKoNzG/riVCdxkITs7BjsYntzbHYxP7mSWwikscFFlvIyDqI/YrQLG8JzRxBaPaVeIwhM6sjZGYDljGFzyyXRPGZrdbzr7+Zho1ssXnL1bY9GiHZGOPQiYnICkNRFaahqIqTMFS9rKzzu8331oubq09P6+X1zfzIHjZGRHZS/ibhYhlKJJiEFKvRrgKsVtVEVFPCZTIWB0Mf5UHW/4movCIxC5w7Pg1cmoo4K09EnCWEP2JO4zoNcdYgmhFftAxuEyF+8dSkYUUkDUOnLCYv7yPD5JWmVh4lEjstD5bPE/Fg+TIND5av0/BgeToNDnJ1h24iZit+lmWSZgzcx6GrBDxsMVPajRNxXfHHbky7dEob5k8OhcXFXOCBp8IEBW5TMVp1UzFauYkYrfxEjFZhGkarKFgghvc6KiQnTQiUinkajqZYJqGqinUSYq2okKEo6k7dRJRNbiJKLD8RJVZQLEBjsqQ4EZ1TShPROaU8EZ1TKhPROaU6EZ1TUs5tFoPIIJIQYGxyvxyn8CJGpimQn4oHKIepuIvyVAxDeSqGoZxpng7IxZaFxGpME1UhI/JKWGSmvY+YbgpNcekgZ2kRkq8DSfZFMCFJOi+0S9Jh3r5CM186zIlaeP8kipynYkAqZSoGpFInYkAqbSoGpG4apqLqlN05jfJ7nZbAp4aJCHxqnIbKqKZpqJdqnoi+p5aJ6Htw6i6Syai2qbiXOslANOZEm4zap03G7NMmI/ZpU/H6tKlofQYBe8QCaVArtDIRRVCrEzEEEQF6JAlP101FwtNpJzyLDkNi0MrTMWiVyRi02mQMWpVl0EKNHKy0rEKg1VgCrRMz4XT8uQ5ThuMPdg0DdlOx5Tg/FVsOH1ziwFqxjj/KVRBZOMuh0HkylhxXJmPJEUJOQD4D16ZiyfHdRGQ2XjnReTfOpkVkNjslo9+HqShffJyIWMeniYh1pCJ3otrLVAwwvk7Fh+Mn4/AJ0uHPnD7BTUYQE/xkBDEhTEYQE+JUBDEhTUUQE5QjoMkbMIhXAThgwi8j7FjMKDVFapORiigxKWC3CFEpIO2BEJcCsh7wkSke8je6yFOco8pQIlV8lBg+Ik9UB6qHpwlIGDBPe47qXQlZEfWeeOY6kH6cj1vxIGc6HrnysrWi0GEy2pMUJyNrSWkqRpWUp2JUSWUiKpNUlT3bIuVObSr+ktxNxQaS3UQEJtlPRLmSw1T8JTlOxQWS01TMKDlPxYwyiHphrMcyToR1ahYSidoqT0dtVSajtsI8rAq1VWWprVCKB1TmSFM8oMiJpnhAkTNN8YAiC4mtmBOUiGnJpMz8HSAoM8FY1Uxkg2XI8TwMMLbneRhg7MDzMMDYkedhgLFPwpkzSkZ1atKcWiaiXBlyUY3xFhyiWnlFR9H1dBShEHQUW0KHP26pIxhGijbCSPHb1f39fP2v4aR4ftfkrBQ32/eceSnOvBRnXoozL8WZl+LMS3HmpTjzUpx5Kc68FGdeijMvxZmX4sxLcealOPNSnHkpzrwUZ16KMy/FmZfizEtx5qU481KceSnOvBRnXoozL8WZl+LMS3HmpTjzUpx5Kc68FGdeijMvxZmX4sxLcealOPNSnHkpzrwUZ16KMy/FmZfizEtx5qU481KceSnOvBRnXoozL8WZl+LMS3HmpTjzUpx5Kc68FGdeijMvxZmX4sxLcealOPNS/B/CS/FM6sAzU7huhJriT4/z+d07mClcgJkptuQauzdNykzx0DfpTExxJqY4E1OciSnOxBRnYoozMcWZmOJMTHEmpjgTU5yJKc7EFGdiijMxxZmY4kxMcSamOBNTnIkpzsQUZ2KKMzHFmZjiTExxJqY4E1OciSnOxBRnYoozMcWZmOJMTHEmpjgTU5yJKc7EFGdiijMxxZmY4kxMcSamOBNTnIkpzsQUZ2KKMzHFmZjiTExxJqY4E1OciSnOxBRnYoozMcWZmOJMTHEmpjgTU5yJKc7EFGdiijMxxZmY4v8QYoodfYTAS+FGeCn+OH9cr+7mT1+OsVJs5J5fr29++paWooXcfcNLEfxBXorfrp9u57PV4m7Wcvf8q/0f/8emZeuZ88V3EzBWPB+ZP909bbD2/Xj/te1Xn68fNAqL+8X9sbgRIwP21c93beydAfY+h/mQA4zbLNx4lLPicGv3663R3ASL9RK8AbU3jwkWB4wfR0kpRgVLjMIqKpehsDb2+3z894OIgNGGFUrjzqGiddYFJCyad4zOXRiRzPsRpUVcssApDZ8AvlBtHpsAvo20uYwB1BGAl6G+Wdev1vNPi+V8uzUZh4x0wJ+5+fdiuzxf3/71enkzv73qse7Xq5v5w0O/sH/9yo//8+l6s/NuYC6Wq/WXzdJ+nFfCaNOAreQ4l8RYbwWK98Sju4YlmAd13f5luvb4jlMYqhw/tuXUEVUleicE+zCje6ElWQE7cb/j/At6seLbRaC6saEboaGt0PE7NNaRAd7ILNHQ2ejdv6wjAz4dXWM6MozNRz8y7EPit32wIzO671ui4VagT5TSxsxAPzbEGm83YGlpsUNFM+ixosNFa8dbGT0PBSUmxoAaN5ZkEQUIo6QQhwFCNwKQ0UXGJsY59SIT8fmyb54RqBJHD0qDHP3jLBDHf2/xEODbi+dYGMZ2lzAimAd/bygm4RtB5AgWxqZEGhEsgb+3FJPhhlF8ImnsIFRG2oWbUJUbSWNDvB1XWO5owaBLhOxAueooz8KoqdJRQzSPLftj7CQ5ogBW2wiHl2dGaR49fYysC5nweEVqnObRpXxkZufGi9ZI3oMRyQylFdzWcZkaqmVsmXfluNJKQAGstuFOL1eZoVrGFno3skCUUbt+ZBoXwq7vqAFVUcmsphF2vacGVB2160cWiOpQgDZKGWAAjKwDddRqH5kTlfDjUlRmlTjDVq7bYD+u1eYCGsLOcMtX1BJ3hiO4NtCwsyRoGBPU8wWgH0nNR41D17Gp+cfNQ0s9LYAOTRMggvaWCZBQAKuDMm+xOSjtqhXU4DJlq7zFhXZ943d/rNnDjPmR3dtq9zA1Hr/pc+OJ8bAxAGpxmBmP3/uZrY7QWtFfmJiLxTDtHd6F0Y7N6C5qN7EIt5Fmx+LTw0e2Yxu64ZttdR0MYbVw9F7ax1EID1+mmg0JvIUADinmdrpRvITOJXTv91a7M4pgVVsYvYgOowgVvPa1EV5G8s1P8y+Lm+ttcZvlkfDTA+RRA3fr3eLzT49bX+vN+vrmL/xNNnEVXcb6aPT2uYzpx3vUhjERAnootJsx6pypoxAJhjAbkvmzJUi/N8zfHts8zBZWGMJsYYPDaSyIweXtyOVFPkKUdfLwkIBvFZZ+g3BlZaspwPuOKU8U9h2sZhFxcbu/7XGBTcMeWfOB1OsRhGQhVH6FxRIDQ0PXW0u20UvaNorg0BXbRPD09YHZWxF2zNvi4KGoJkRCfeg2BOyGt3UxeuT1o1JU2Fx5iV5Nx+yVn+bXf/35PfbK+H1sGVNMUkJXwXxaB+/7pnTKCdnqwKQciems5BEXtS1dgg0AEwI/BpsQRTikm71X4Z02jicO4zt/YjOHR4JFTOmyEzZrS/UZjUFw2UIIKIKZihr5I1md9EhG3O2WUf1k1EQw9VP47RnMg66o6WDK1uBd0oIYv7odHYPFwVuSCeGFLclsUhB2EDBNOQr7idnoJPgfwUxtfFswtVjgldxsYBVWclOehq50Fint6M1tGFIojiTIwisTmFMJ336ZsgX0KGMioBkBNkLi10qztzJ8lDHFKfBRxoSo8CHChMAXaQui4Yu0pc7BxS1+lGmTHmUaHJpjtyoI+waWZ99wL6gpXRI2InMMZGG3MCVTbH5sJWsVPtSYTW3w7tWsBDPaMXqIQ/LkWUCdcnqAxqvv0LOE7yydoWcJi7rTd/xZ4lviwlOeJXzHnyVs/aBnCVs/Bc25MxH4IGiMwNR38DZlKsjBwRY2hEO9KqaKlPRnUEfjCdCjU8RFOJfKhBCiKmyFw3FxNkQREpUcpvCKOmxs6Rq/5Jqq9+gRwpsJxmjaig8WgueXNIgd1o/eHZdR2SK/PJmaUvIZTbCMhTO5Z2LKwyDwtbGtoMpbcWjvNXgmW1oicoFfwKymBnikRwsBNmmShRB4gyRPapAQ98hlVD8Jna+mfjLoNLARYJPGRBBMGuiKxhPJvS+cAhhJr48dH7OK8SP7CPtTTZ1G4RINVOr4FfNoj0fBi4oR+voo+FTN+RVhL6rd1AKbeyZEFcw9sC8bfUou/4JTMnFBHTpufMBZwz5btCfwplQsBIHRJWOti+iGYMqWcDdh95o28HR7ZIJ3JbOTirDyQ1TOfvSG27lR6fAo2LfcjKdTMpG1/EKamUEGH4fmg5o6YpKXI9eDGTcKX/ayk6s/CvYDqv4EGxCm+jMaRmxDFMEGAXsQTg81F7rRq3M/Oo1Hr859NwoB54KaDRlNcPZ+FCIIFobZpAgfQ02IJBxDoQt8P3oxHsb7bFCM6HG1vv68EfB6+ZcRmuuDSBVySpRnlMMY8F2JKUbtBJsZugzyxIW59xQPtq9wLpGvVsNRf1ewnIujV+Z5FCGB52cbAbWWbAT4ntyGgK0iG6KhV+0mBH5PbkM4lE/PhvCo9WNDBBjCclWP31+Pjs0G2xE2REa9BTZEQU0RG6KiO7UNAdsLFkQYzUX2rwf4kM68benMu3iZfrjcPfS7R/+w/fCyd3D3T9v/f/4bynv+Qk9OsZ77Edbz/1rd/GX+OPv0NL87xnv+cLOYL2/m39Kex/oN6bnLb0nP/2P1+Lj68sPsP3t7fMt7njb72Si7efAsu/lzx623jbrqG6WRmdu89g2jM0eLmBhu+cBXQ+H4y+FSKBBnGF8HBSJ54ougQKw1fAUUjuocLn8CUULwtU+wzHy+PomVLczXUBllRMeLj4AlZYWSKRiyUniE5UrHy6WAxadw5HR8nWJKn3O0xEzl88gh85XP0yhBOopkXWK8TKIv89vF05erff2y+82mby+kaZQhHaw+CFUbHYQeXD88zL98vNvsx1dfrm9+WiznV95eQeMxMtbhbs255yKptTyiNbroOaa1DHsyK6KvjT20uN2q6+rTevXlau/lJLVXSO3tl0ZLfXi5vM5q52FXaSOHnfOTjrtBAAaouXhcc8Hxy2gaZWOHoYxFKcAlnV2k+lMolV5G2dRRJMNhGDLNgFwgGnX795YkFby6zBBZum0tG78fzbaPI79H+VUyRINuL77W79EUmyySndeR3yfUyZZHuc5HHH0WAJxTn0fpyOFFpIwyk8NQeZSkHJ3sFnk2X8e0jvKTg4YWxsKtGlpvLkDlLW4QowCaQli7Em0KvWnRiYyflGlbBaQpL6qtcrKuEyavNU+EyVtH6ddRYwLk2+bnssV8l3n/ncWAN4he4A50JmBkFxoHVU4bRCFwK80BTr1TjN5BSAN3pjMVV9iVDFRcpZey4yo70co2CJkgj3WWBktHr5UOqwc4CKwgF8uJRt8gTIM82ZnKC/wSaq1PJdJrKNoRSZCyG+Wrh1fRMMpcD0MZzmWG5cAkhqvjHPY83SZOeBBEqvo0BuDRKr5BpKofo9SEIzRMAJjU2wLI7+T0rDh3d1Cp57sxBDg4w0JonbAQWFiCV8uavk0wzdIoAz0MFSEuemhRiaOs9Kh9B+WpDEI7SPsuneg80ngDDGuZYIClSQ6Tg6gT2EBKIKl4J1tIp+q/IbU+Po/TOLU+bMMkmlkflzOOM+vDq4RFitTxXmqTranL6sGyjBPskyeuMs6yzx5BTMgmG+ZlnGwfHy5lnHYfB8vjBPzweGnjTPwwlsVH44TtrrHM++juV7FqAfL2Vyc5YA75/dHdEGypsB3Wf4E/YlhNAN4dK8gQr++OE3WvV9aBNl5nAAer4yUH4I0X7QZ+r7S4O4Y1CWCs7gTFCUblQm91bWnqO6mfxksRpDGEgN7t2gjo7a6NgN7v2gjoDa+NgN7x2gjwLa8NAd/z2hDwTa8NIVwXmbMkCBdGpmSRv++1aE6GBQBgLD9eCgA0VjwWkxvVW99n/BPsX5G+90Xbxt/8vm3VqQySyN/9ejQaWL79PWEXKhPanDfKhPbjJQ1QEwRVvBDR4dN4bQMYK46XNuCO6zYifRGMEdoM6xyQq0+axpZO6lWwrTv68IXqjj98Hdfaqda6JN8Gm0rM/HUwSNc0LNvALp8TjcEsXwjb+hPclOZalfkrYbgzhDthu9H8pbAHaj3AWGblCf5a2IN1I9B7YS8XfQijCOjNsI2AXg17sM4Dz3bkCno5bCOgt8M2Ano97OVKDW504Bf4gtjL9Rnc6LCsgt/cBhP8ZeZkroLhBhRqgLHqeMkG1GRrkNlRZZOtneq0UTNdat7WE2+egXoSzLM2zeGz/i/23rU3stzYFvwrifpk45bszTepbz4De2DgGGNMG7i46C4MVKqscsKqlJCS+mHD/312pl5ZVUnttRY3hWzrAEa7UkotBoNBMhgMruCj4d92svKuUY6Gz2cOSs5HdQ4W/q4Y1pXihFXrNPDx7xr9xH41Cu7AWEfkZ6jD6mUX9ea4Lqt8c1yHlG+Oqywjg7ADfksWYs2WA+SOK2T37/FgsPv3jikkPf073pOGjD9664anf48e5vbf2x+9Hf207b+3EA/f3/17e7u/+xCf/mD3720iwd6HO5aS7Rceocr+n999uPv77Rce/2SH8/i9+0/B3X9KX3xz9ynE+095D/L+U3j4tGsu3gmyQ3v6u7tP4zS5+xT3/+7uU7mXJXyJsvtU7mWJuz6U+7/boj39XUn73yz58ZsoVcs9p8qftpwqFFmLmyBr+a89KhaJrcW48A1di7Nf07X87fLq3eLPm8v1Ytwkb5aLOIzu293fPf76j7tJdLlenS/+r9Xm/HZ18wD+LKWLiSKly8Xlp9X1zThp7/t2cnV2/g+N3AXOg4AYzmhKFSwj29GcKhiup9lPMNxAk7VguJGmVQEz3mleFQw307wqGG6hWVYMmDXHU6OAyIancwGRLU+NYmYniuHmM0MUw808o7zd6EYUM2CVL3Hg6rT2jawxkQIuPDBY0QkHLozETCZSpoDx2WcNBUzseQMF7CVeNoDJvZ2mLT9PGDNx7nXPM2rZZ6+jTR3PfxkPWI2O3smn5dnm5Ke/L2mWHvZM5yc6VchOxQ6dcgMdqpqkfpkAmuBh20urwtRSeqjFydeNlV55sldfUf/M1C04PfkLKrbnaWbA/tSs90kEpiM059OU+T5N7meUkiZACgIyYf9+YDVb5tSsN2Tz1s7avAVUaM2ECulklQlr9+zsteGwUr7ZXhnVBFaI3EGIKJEOTroKPkkUhNO4WaLommagLRJh16S8e6ll095SbGYFckyfiXwyS+E6OuaC4fIxokSS/6CxHAw30rEcDDcBNjVBRhb4eBAmGx8PgnAjMo8mCNSiEPjBhLN8rAoDFsI+GLDnI1WJpO0BnNHaQD1NnIvLcU/8+9n6w/LDc97tBENbTBpvHEO2A0fPMODC+K/QVpSQKWQiBWn4eBnU/WT5sBYG7BiXHlOCRyAzBRn44BvW/cgH3zDgxPj5mBIyH8/DZC3k8mIneC2JzDNLrf97WWigpBOuZIaOY5YZJiIhzVJbScb3KEttfpmoC1HdDfLzXD1T+XQTG9ZextntOOSbu8SYmpD1neXtm5tf7k/vV7c3b54n95mS2VNmwaa32AmPlWAAsokZtQJHOu0EQzCeF2ap7WAvKQywhjxtDZe3NxVzEFLG8iRxEMOKO62MSJ9asdy7kuhjNgic6XMrCFzog3ah6X24DLpaKiLB1RNJUS19ei+z8/ZkEtnTp28UmU3TNGZq5CJ/uEWFTfyBHIXO/AEXhS78oRyEVqh/QBYWwx9UUaGtxuuMQDMbn6kzfk+7QfscQuDESRMTh8l/Idc8JgGGXPQM43maPK3yuq9hmKyYwpl74c+5heb2gYVGoQ3j55kWc2eSZQZK9Uq2TJmdz8eS+8Veygygetdk9jaq15l5mgQIPoOjisn8KRyFxiepJfckN/BHfBTa8NDYzCFKJFnPIRNzktyKiJpJltyKiCJKNnH6iLw+QGRiJpIbD0GIZAtzombYkWx1H86NVEk2U4r2YnkNQGax2gaA7IhkABTTi6mU5itin8MPWUiKH/b0OcXZv8+JxCVVdukec/GOjl8mLrZRzCKmXPZQWhjUiETVKIJRky+7dNAyV97gEAbonjKQoHTSauipt6CeuOuGQWex5p4dTMzFMDqGmbloRUHZBcOajnqL7Iph3ZRhRDoL1vfsIHQL67kxjMiKYRMJSifKpp56ozkI8qRhRN71Bf1IIunIkht8zFopI4odiqpsBDytGwR1YEITaUi2kFKL9V0AZLHcC4DsmWMGiBn49+QgnxuRk8RW3iDqdAUWOjNnAVDJhX/8DYpLpCglFtowJxhMEwRjVmbFdfxLeBTaC2/WUewgvFpHsSN1ggGHMAmP4VGBs/AcHsUu1MkLUwZTvoxd5IpaBgnBFvJwYWwnPLZHsamcXHQQg/ByHRU4Cs/tUWwqNxdVRhYexaMCF+ElP4bNcGRZy2Ib/q4MxubOjB7jeHD8jRMssOfvyWDsQJ11QWUIl0KwwIm/yoKxn2bi9dV4iD7s7g+UKgp/bYOKa5RzIIpNvJQcqOOaVWqfJQzZaVX4AGTqIFhJarYmqDdMefYQkDVRvWGqdi+pN0w9ukedKqtdKsyJrIZiB/UWqYNi9lKj2Fukav+sfIvUo4OOOoNVO+Wp00sVJsg3RT10E+WbomoHk3xT1KODmTquVDtVKEe/BuMG+Taog26ckW+Dqh208m1Qjw46yrOvdspTPnEVJsg3Pj10E+Ubn2oHk+AjYp4ckaH1BI25cq5opXenkYVqdiZjyIo3DgptBWhQaqcVDQWQvVZCFEAO9Js4i1FtWoIgyLHQiTie1KoxWoIRKLACFvpmCoWms6KmqlJagiUoscJa+l4KhnbEgafed/49HSxgoG+iYOhIHNPqfRce0cESZv5CC8Yu6omuqoo48NdCqLgMeRC7xkYqg7DefSdWzEVEFGiiYezAnFnr3RcexcEiJv4eDMbO6um2rorC3yah4hJ5PIZdEZNhzsHV7ieBCRoWUXjeBmN7iiyz2v3AX0PBIkb++gzGTupJv66KzF9CweIKz9dQ7DwwMYFq94kqdpZdEokUHcsuiZnKZa133/PXWLCIci5qXdzIH2rBo2cWgh7g2TPzuagWY7HPfMzDYjz2ZRCvtKyfP8ZVDHMMBjtoxUutLh2kznhgB714OdWlg4E5yIEdjOrtVJceJuqEAnYxq5dMXbpI5f1hXXTDoF4zdeiiGzj3GuyiVW+LunTRUS402EWv3hd16WKgfEOwi1G99unSxUT5f2AXhdsZzFNxRL7UEzQmteGvZ2zAkPkX9NZjyMLtDCq0E6BBqYXrmYQhC/WYIoYs3M4krM6joW5nQHGzeusRa1WKeApEVAEE0ZNnoYW7GhRauKtBoSk/HrMIK9zcoOIKNzcoNHVzA2oiyfchtclBcDcZw6qgCFdDILZT7nFQbOUeB8Xm7nEwu3DKrQ4qsHKrg2JztzqgMuRMwOokcULNT1gHQtlPGFu54wGxvXLHg2Jzh1DMLrxy44MKrNz4oNjcjQ+ojCDfo9QmCZEFZNkV2QvkhTC2cv+DYiv3PyB24O5/MLsIym0QKrByG4Ric7dBoDI8/wwJFli/G6pNQKKWmGVX5KBcDqHYStAFHEHheqgg3IIuCjEXKLnURb6UHyozX8wPRebL+aHIfEE/FJkv6Yci80X9UOTEH4VB5MyfhEHkIpwwMWgmz2ggoY1wvgShrXC8BKGVgyCUTu+Scg4EpQ681M5gUkcB+kBSw7u3b34aP1+/Of3+e5vfhrfjkTu8e3v37y2n6fbD9mdvt3VRnj6EvQ/jKXL37/H/3nr39O9tQY6nDzbufQh3v9l++20uT//eliJ4+hDvGtl+4fHv7z7Eu7/fyfTYzv0n//Ap7AHef7oXe/fTR8j7T/cy3X2yD7/zX/zd7tP2Ie7uUxj2/273aftY8+5T2OvB3aftc67dpzjs9yEO++3dfXIPn/b/btfuYwv3n+4l2/30EeX+Uyj3n+I+yt2ncV3cfXJmr737Tyndf9p9M9/Jae/694C5+7QNau99svd/t/3OUwu7T+6hhe1Pn1rYfXr8u+1Pn9rbfXr8u+1P37oHg7T7v9v9/9PvdmPkdqMyWvfqZvl5nCTvL26XV5vVejs/Ls7GiTL+7C+XH24vlovT08X/vVku14vv7i7txm/8uNxc7yZIiLb4UoIrPsTBjLNntf6w3B3St7PyCXWcah+W1+eb1dXdzHrzX+OvFvfXgIuPZ+c3l5tfFh8vN4vPqw+LT+PMXfzm/d5Xfvu7H9Y/rP+6GUXazc3TRYi//7waf/bd6p/L04Wzi5/H/2y/9OdtYYPTH9aLk8X3f7u8erf47ma5vFhcXZzdLB//6vGXf95cru9/Z63/6pd/+PDj2dj4h8X5anN+u7pZ5K+/8b/HP9wsvB2++vlflzeb0Z2//Tz25frh96PmrtdnVyc3lyefNqsPj9Gd+8deo/bO3l9fXtzeLE+237tarT+9Ob3Z3C5HtZ5frreL0L/eXK8+rc8utn97v76d/335eXV+dvHlpereUGwXsd36uFreQXzNqSIQJkFJHDwulFYm7HUGqvPN40LyBn4DhXCjwBsFFdf8slJdnTjkKS4JFFYUCJ2QQRMinRCuEcKcGLARCIyw6ioC6xJWuOAR+Gp1tbxbvrYlUJ4JwlU52wUWJEjGIFA3QcAR77yf6HwSWI8gGbNA1QQBF4GaCAEm7s+f+JQgYIXuFQK2Au0RBCxkrYBvivl4Evg8jw8nQQLz1TuxZPHEh5LARH8++oUB82SvGLDjqV5BYD5rBUuf48leQYF5qlcQ+NmEUPtMhOqrZMnVeDI5+bQ825z89PfxAEOmSQa03HCuDcfhoJ4QeMPUpjxVxpCFcp8gslDtE0P2QpYLNJ+8UOvTYSJbIU4Iiez4RAlMF54/k4C6CELeCCRy5E8l0MQmLtofz1EYsMAFiwEXpSCmEwpi7l24P8Zari7O1s8dWr5ay69vLz7ebrglfO9KHj52QUa0dx8PaC5Ma65ezzI4/vSE9cHzBwjIrIJQWBADFm7pMWChlgi0Pir38xiw8iQCiogN9AkCelpAXM3bLxaAKdynmXh9+/765mz31W99/B1iPBRTIC7gE9VjT+N6xFgjn3iNyRtpXGyEEu+IYQJn1EE3llKw4JNCmmDu3CmTYG7c9234EJQF6K4fncQIyCYVmf9Wn9NOBnPNTs0M5pK91IAPerlJcEZ9ZeAS7yWCQgr+JzYfCjqBH51PaDrs0XtM4YYa7kFNMIQfsabjgxJb3mXCgIXS1NDYZSHBEzM3ohSPpaZxForRYboQMjwxiQX3EZOYT+6E3mIWeOa5GuxBmyi894jJy6d1Qtmze5wcWATzy1L2j4fe5frT9g9u16sb7uRbeOcTUxif+YkpLLLB1gRdbSc1kpy+HIjt0ZscAT4rNGJzodBub8Ku64WIKWQ0ZhDyYyKGbPmMk4hpQ8iRSZVb60EIk4L9F8Kk4JhFxW9Pdb+9HuIyAztNH/3Mr9bLw4lcXBncAT9WZmoTMwSPheHWBGNwl9dyQhuh6hZmYcayox77jfpehs6UAj21qu7l60wBZw448O4sODBCnBVbVI0QaMUWQiO4yqA2hFArJrPlH0IVDJjnnskY8NOUvbgcJ+vfz8at4QPg5hcs/c7R7jioEC/KnTG5+XQeUN+wW5w4RSfajQc1wXu94AgWGhhTMcOGsX9KO4gl1IotNSzLe3aYKp1QGRbUpefzDECZA48MyhzJpcFUDfewA7WXlkM2kMEGMnQFtl1ct4mPw2Fzo3IBqssjEKY3e5k5mEJspha3vQQdEh9b4xg2jEJZOcOFUSgrJxJ1Hp0YUObAI4MyR750ksGQE488YMhZdDQMlk3OsGJwOgl06PZblRxenwIfvAW1HawYZr3XSXuc1QTHemjgSAf43FiqwJXx4BMIUBviUwjQkaYDuWb+oWbntnHsyOCh3fokPPwEZxBeupmKaxqFDFhTe9EThQhuHUx52FjtphC1BSdKFMK24Exh6vREUmqhTA8qdVadZHRu7WX1kDHmr1eQOcKNaaCDzOh2u5cMRHjyB0wAidwnOYbbRatO9fzBTTnxwVxwgU5CNBectknIewCnbVKqvYJSK9VeQamFaq9QVq7JQrVXiyEb2j3HHlqYzOdAoNpw6mHIYm92PS85qO2gHiz8XN5mFnxpcFgSjwyqLcte+nx6K7KXjj0sM3iSk6nPxcNvxRXH2lbc1yK8JtvJeRBMcayrkgk0IXXJFFcamyhFKHkJzpSiuNKg1AIrMiq17kP72b09Owg+NLYn2sHIxxHweTqRuGQdZQB2cHQuCKwXhXwEYy4YAi81qusoH1J6mG2iM02w7cPimUvWU56WHQp/7sFkNvJlECi6UehMsIlmhIsgcDYohXhQqYWrIFRqvhKPCRiycBfkMeSkHlICZn+ZP6SAOimq5B6j6+GfgoI6t4a+NAFFtvSlCfbyxxKpSZkbRoJkKJNqDvJRKIBaiXILqN6TcIqpvG20TMUevy/oQbAinGJqYEoWUrWbTngOChqrkpUEWqsTSEpQqYW8JFTqIJ8UwDmmJyihc4wgDrKO1HwWoEHNF9lzxHZuPU8J3K284ppieldylEC9e8U1BaVWXFNQasE1TRiy4JpGDDnxDhgos5ymlDDLFtKUMJ0IaUoRpGQ0asw/zRS7tsHSfjE2HniWUqkCV7QmeK+YjSppSqANRfmaYr6hTrLnjI5M5q8pImZNiudbKb1kpcykVANTLlCqkimZSVXJhKR7cKJIeUrYTIlC2j0qtZKnBEotZ9yjcytm+SIkzR9RjoW/CAE3RYKyyDrOAJLwsBQ0gIaspA7D05CVhO3uSlYSttJLWUng8CtZSeDwK1lJoNRKVhIotZCVBD3RsEpWUsaQ+aykAvKCC1lJoDb4R6aoNtRXpgZ6eGTlrCQ7zOW2KllJ4LAIWUngsMhZSTPqTc9KyiDfvZCVBL2ns1JWUuWJrC2KU11qYE6QrAqmZCVVu6lkJWETRcpKwmaKlJUESq1kJYFSy1lJX8/vGbw9p2QlFbDyhJ6VlMEWlKwkrAimkpWE6kXJSsIqCitZSaiu5aykLmYrZCVhJUqVrKSMIQtZSZjMDVlJmOhSVhI20aSsJGw2SFlJoNTK1Q8oNX/1Y7ESuUJWksXqM8pZSdZg9sdnJaE6UbOSLPRQyglZSaDO+awkVGSMo77cYdp/H8Sgb3As9l7Q7eUfTb8XzHWVTjN/OD0hyRqwM3JCEqyuJNQJrzwxdkpCUh1MuJaxlZfUzgnXMnUwISEJXG6UhCRwPVASklCphYQkVGo5IQmdY3pCEjrH9hKSAEajyoq5l3pEvIPWFjY9Fwncr/VcJHCPUnKRQGNXcpFAY1dykVCpBYcUlVpwSLFSj0IukrUYsuyQYlURveCQgjop7B2FBWsXBsEVxbQt5yLd66Q9Yu34XCRwpPlcJOvA8ZA8WacQX7gQ5EuF+YZId3ZRjSb6UsFazAqy4KxW3gA7JiHJT4FFIRXf2hqYcHdSB1N8XWyRVNKTwLUsKr4uKLWQnoRKrTu54NyKMun91yvIHPHfyLPeo9tklKhFxXV5L2GJjap30GqSqUjBzTRZOgQOLtBJ4CIFp20SakeB0zYJbKSo1FGABqXm+UhtwJAzj+wxZN6tDmCxccGtxrSRjXqIgR70OCFpCdR2VgtK2TiXt5n5TH90WPhMf1Rtcqb/jHoTfOiAmZtMSGo9OBUVx7ryLNUVxbGugglU+9bXwASqpDqYEjbGJkpRXGlspigJS6jUQsISKrXuQ8f5vb0i+NDgnliKfBzBprofhEx/zAD8IGT6YwbgB0vn58AKcfJJYn7b8oOns2gwp8UTKU6Z2p/8EOXTDyi6UE4KtdksQIM2KxSUAqU2gwCNSW34mlI2YciWR44YskpAaqGHN97wBKSoToIqecQkj7zkoM4TfW8AisyXlkKVXegbCez5nCeSlTKnZmtk3z+Bslu5BVQ7Qvq+rTyw9VZI36+DBUGyWAOLgmRVMCFFHzUpIUUfnGFMalLipGYSlRIntZPz7dE55qzcAjjHiCQm60j1eN73RvUSBKlBe4m8I415A3ShN5vJBrLcALbFuiI4vZix+EGAxkaUSF16cnpBqa0ADUrteK+3YMieR84YMl/n1EIPLjyRuORIZJ5ECdUGvl96UmZ8HgYOmUhZiiSyoUvKosiWd6JBZHwOFhKZmIMDCU34poaEJjxVcoIHwm8lZ3hQkugrr4C9wm1UBVO4jWyugSk3HlUw4aEnuCxGxePEdra9VCI2JFvmD8lGgRwF7ageOcXmTFQip+D4Zz6enDGhlcAppvCkBE4xfSQ+cOqgnH2f+HQDFNnR7hiK7GmnCUUOtNOEIkfaaUKRE+00och8tBRFLrTTBCIzPEUDCW14pwmFtrzThEI73mlCoT3vmqDQgXdUXOXpoM8CTaCDXvj4LIRS3YBBZz4o6bDHcZ7JyckkNpOiU1hsIgtgYLGJndCw2IQ/a1lsgbkExg50oBOc4EWg7gMnTpFjqKjsAoHfIdnfvX3z0/j5+s3p99+Ph6nw1rj8Nrx7e/dh++R/+2H3w7fb96zbT7uf3n8a/351s/w8ivH+4nZ5tVmttxJcnI2ijD/7y+WH24vl4vR08V/jbxff3R1SFn86O7+53PwyfvHH5eZ6J0mItvhSgivj6X0wo5irUWO7+bnt/hP42KcPy+vzzerqrgtv/nq7uRrbuD8ALT7eYS8+Xm4Wn1cfFp9GJS1+s/37h6/89nc/rH9Y/3UzyrZTw+miDL//vBp/9t3qn8vThbOLn8f/bL/05+1L2dMf1ouTxfd/u7x6t/jz5nK9uLo4u1kurA13f/X4y+9uLtfLhQ/DNz9fLi/u/yod+O32r95vVuf/WLjh69/+4cOPZ6PMHxbnq8357epmYb4BeOjJj6OBLD7fadyMUNuvjSq+Xp9dndxcnnzarD48bgP3hI6jms/eX19e3N4sT7bfuxrPoW9Obza3y1H/55frrVn868316tN6PDuOf3tvcVePuvvy3Lk3alvD2tnsankH8nUNPtoVhTZDS/uh4GNxntQPW91oHxTDDbwHigFH3v/EgBPvfWLAmfc9MeDCA2N1nZUaOhCwQoAIAQtkiJgqhMwKDFjhGoeAhfxjTGKFZxwrI84DYxJn3sHHJBZODgNWvJONyz54Vl9GZVeb7c54s6IpttlEjfBF+9NFyER4sD4pm6Xoa9IfrsUiomPlNQMfwMI4/PnbRIxlmw/lYSTD/L0qRm7KB9swYks+PIjRv/F3tRg5G39TC3INCTFHDNkLIUeQlkG4XAbfagt3yxiy4KeC2hAcVRC5CNfh4OMS4TYcQxZ8VQem6wphXTDdT7jZxlJ0hPt3TGTBXXXY9amQzordQwrRbizYLaQNY8FAIdCNABNJUIbapWjapodVI87jBwfVUcVeIQbVUYWeiwUvCo+95wtBFB56ihZ4fxV60RX4C2LoOVfg/VVM3kLjQvLuZVJdX43z4HBy/EAAGtqhhBQQ+WRFDJePpGJ6ELxUTGDBSYXWCaZwnKMkFlxUTMeZB8ZW5CjEUrHlMgmpi5jMSchjBJEFGgdQG4KHCiILlA6gNgQXFUQWQqqgNhIvMzQFkxBThRaNJDipkMR7yVAAB/LB5JmshkWxV1pZ9Taxp2tZ9Tahx1RZDYtCL6kyHxaFHiRl3s2EXiNlPiyKycu7mZi8hfaGIHmJ/KfC2EPhw6KQHvbynqapFR/9tyhQnO9lQT23HG1vNH/ZynoIQngTg42a4Gpi6hVcTUxi4TUMJrFAqwutl0VgAoOAzSB4mhHLBxA8TWxvMoNAxZswoQX6MFDRgquJqkPwNVHor95rw3mpEVNKEuEr1BHm63JnsFcIDqLgb4KaNvQt/sOGkr8MX9bS3KhYpjGGU6Q11MAbS8IPHDxe7tBRXrcxnhTccYIHEt5y8ETusKcWTpPUx4F9zJdcB2zg9FhIeOr8YuxAwicOnp3bkYNn53ah/Iqva7FNwmdOei9Kj80TK1Bk1zY7G8ULrzLPhZexSTzGF2woshjiwCrXGltE8aEHs8YNovhYCVvj+Gz0gqWvWho4Y8CODqBglkJk+yRO4kCHJEDjI5J9Mjd6iQYG7TnTugCVXJQ4SlEqVBgvvHLFesHk/gzUiDK5P45DFp64gtoQkn8qdBnGC3yApYYlZPiAuhRuT0Bd4szW5CLkaWLrwu1RYRDP4zVbCEYErBlEELhYsGELAhULZmoEv5H15IDx71axLTrIpCrY7oQXS7OZEzyLBwJwLIsIjxlhFKhVanMvClR/tWlHZOo8vhbDntkQuTqPyOBbJphy01eBD886Il0nkjLzd5aonvnkOFRmnj0FVjR/dQmqI/GXlwZ7sWmS4FnC2FbAxoaRSdsxpLKFvDlU6iC8vAWlFi40UamT8Ei2wvpikkDpt1PBQTCB0g813iywT4NjxVAWkcsbQ1kUWY041aGHW/CiA141txxUxJrN0YXH7Ffrz8y3EUSCjyUnPpHjY+vL1UHHNxf6KGAgGhhDJPpYz83bYtR7qD5DX6x67AFHqTjx/IAqVL0PAQ24CBci1aWkCFVCq6tI4euCGov1ma8LahyGXGhSSgO+kycyhRwLzU7ax0XBfzlnN2erC5K8gMgl8my3hJMoCu35AyMKzWfPwtBsDChWrf8gHQKbTpSoyWUH/gIEWxDswBMNgDIbnmoAReazakFtGOVMCpqgUQ6lKDYcH3oSG+RA2csLAkvp2soSubwYW9qszk8+3m7WZ+dLlutFOcNiZCYMpU8gLUo50YJS01conhx7qzBrYXPYKqdcEFrI0QVH0wpJujvog2BCXu5OBQfBAn1Thy4uNqqn5GrPk4pY7X6Wz92+w+HL2kKngaLD4QYeGpzvRF6P9dzMITJ7rOfmu5ML9vYZe6I+WuZWfBfUEzGoyajig0aQhENybRFxAqNvdf1gKH8esKB3opZJ+/nSLCeRDWxnVZEPrwPe0sgeRH6aq+9vL/6BHMBQmb16wvMYnV4QT3igmUQRHrSVxB/zQMGFoykoM5Ocl+tSTz9ytEE4q2KdCPAkNZ4zyCDwcoFjGgTaA1QfCpEsKLXwGA2VWiGT9ZW9JgiMXDsVHATL8rUbuGSHwp8swDU7qjl6Vd1GNUmvqmClYhpoVUrFNHAuRCFPDzWIyCfqGYjhx+rlz8A1M/Kpeqjoaq4eOqBqsh5oi0ohtOosTEK6XnUCMnlCD1gJ6zNfitdEDNnTDjT2CtSmoF5YpeYLqyRfokBvnG1KKn7E8LPoY4PmVER4zKaykOaHCZ55TjxUZp4VD5XZKYeDqLzcsVm4XcHe3tus366kWW9XcuTPKdiszkm+pkCVKJCfoGam5BBic6MoKYSY1EW5XAGlVlIIY2VrL8p1SqqBfTVLgQd9X6050ytBEW5ZwI29RPkgB06TIt+6VMdPv3VJPSLvTA6So+zeETlIT9DQAukGw5+nIoasXLokTB/6pUuPoXeDl4+O4CjJdy+gQuW7F9CAlbuXysR3g3L3kmpgwt1LwYqSCHcvGUNW8wbt0HoMc4a/ncGeYDrj1AMY9KDR7aUpobc/qOTq7QxoSOrtDGhNiTjMlLro0zcdzgjXNWAnhAdumPatcDuDyWwNf7LDHri7vSwk8mT39RLRdrJzdJmxp/MX2lUvHJLAoRdqiqNjL/AxoFILhAyo1ELVFVN5Vu2IKmPmi6X+YEEtjLh6u0zsYA6DGPVE8fWsmcetdJZPtgJnjeOZAtHd0Cm3P5hpE7RET9CYabuoHik6jb1ckxx0h1zmb6MyhizfFmFW4AcVHzMFr1wg1VY5gsTIDVOrnOfvjKzB+ux55AFDDuyBwYJVvn2kkQcQObFHBVjmLB5yLPTE1HnxGgg0E5bXKHG2spev9OwuPtzLfHCSBP7aBxWPL4eE6tXTFyCgQQTBh0WFjgI0qGnBh0WlzgI0KLXg0drKm15HMBiZL1ahg2BGvp647/vk2T5a9QoBXZWjo+8/0GU5quwOdY0HPmQPWjDBbfQEjVkwkaLkq0IfXIcIciPrWcMorHXbuu0hcawElkm6O21ae9BCkqEdcHDNT4LPWTVkIk/pCay2qCXBzcRKgDP8RQ/IWBHwxLuZYKXnlNQ4vmuO4yfZEXWYDRYVH3qN5LLqiWLmlI0Ij9lUtkLM/QA2kDbgsuOr2INK8rw/DCIHHhnUfKSD7hYsNp+THHR3swbdc+ZPE9iszvKrb1SJRXj1DRpVESozgVZVhFffqNROgAalFt6A28qLSMfUQ/tiLzkIJucjoXuvnI9UV4Bag6muhSLfR7gOMWmvpCFhC4snqqY9QUNW7pU8JGxu+sHxxyWL6cPL1xF9hj7oRyynuC1+kJ/joCYn5CTVJr9XcpJq894LOUkWesjjhZwk6zFkOScptp5lPJ+TZLHXZl7OSbLQwy3P5yTBkos5SaghiTlJqDXxxVxQwfkUJFRmPgUJRFaYkFBoIVkf1LTChIRKLaTu28p7QW89H1YGJ6FVKX7rwqp0SDbUEJPsZMYenobNdGaKDeBw8LxI6Eg7gdoXnEcKLxI4j5yVvcwuY09kJdWX0IMbrVPpfNFBUhP00ZESGH6ri4jChFRdPxxP6msT1mfBDYaeI3g/0A4j9pDK87RINoLIlnYVUZllJxd6COS9F33FhMGrni5oK3zBQhT5qxDU9dW4Qh5U+CNwRvRBxqEKqW4yw+gpjI7h06XTDInPkrRYEp8sA/xIF4vik8T3TxF4EJ9NhQgkfmCqXj4zWafv6X1gveVI9oUNIpNLm86vhO4qAr8Suq3I/Eq28vDPy/xKNtUQBX4l0HtR+JXAjQMvyGbJyR+FBHvU1HR+JVR4nl8J9GBkfiV0QIvgkNdmiUKmVJ0gyYjORK4BKlEh6EWDT07aWbJ0PcFkMpVqU4f7QdykZhI6CtClNpREeSdDyklkCw4ktEDTYKGHKT4r96MZgzaEbVtbVwngNRG8STZwyqeIk552mGe68cwUJdKTnuJaYD+IfTKR0ER2L7mwMPXYyIUlK/eftT0iC3n0Dsqd9kXIqncDBi1cpTgsw9kz+UWZxXb8TgZje34dh7EDv/3A2MQktCy2UBXxIPa7t29+Gn9w/eb0++/HrSe8HUcyvHt79+/ti+jth+3P3m4fVm0/7H749ae0/eKItbpZft4GFy9ul1eb1XorzsXZKNf4s79cfri9WC5OTxd/vd1cjf/67i7Gv/jT2fnN5eaX8as/LjfXO8FCtMWXElwZj9+DGaVejSv9boC32niCH7v4YXl9vlld3fXozf9ZXlxc/rQYe7Q825z/ffHxDnzx8XKz+Lz6sPg0Km3xmy3A4v6O4be/+2H9w/qvj3cPp4uQf/95Nf7su9U/l6cLZxc/j//ZfunP2+3u9If14mTx/d8ur94tvrtZLi8WVxdnN8uFy79Ld3/3+Os/by7X979N6Xf+q9/+cZegeblenS/OV5vz29XNosRvMP779v1mdX62vlnYMnz1u/8624b6fjnU9H+PSviwXI+W8Mvi+mYzdu12s3zs2ePXxm6fL6+vV+tPi9v1KMAD0jgY1+uzq5Oby5NPm9WHx9XsnlRnHJCz99eXF7c3y5Pt965GgDenYzPLcaTOL9dbc/rXm+vVp/XZxfZvH7brm9X2/ubL252nwTVba9xZ+mp5h/B1iT6+ih5GLMYX/oNyI/kSdtjs56vuQbhC8ToIN/L19iBcoSIAhCuUUIdwi1A+DSssPAhF3zBkw5csw2qXWqEWGiYy4YpYDllgicGUEfgSaxhwFGq3YUXTBVYbrCizQDyDFft9BL7aphvUXfXKu7O9BKotwN3WuD15Pkc1U4ESvPwBK+/Gu+EGK9zEA2MSe/5QYrCKF/ypAQOO/JEBdEOEWBim5Ew7Tlg5rELjYk+EBtohwx6rGBoXe1/DpkDFL9AfE6BW42ng5NN4cDn56e/jwYJl+0FvLnxNZ4fZQGhvE9NZoL03DDfyubnYE15UvZky9cy7buCbL97bxJ49ecHbtGDCOS8ziCy4m6A2BHcTRPY8MqiNwGsDRH6affVMJEOYsRccTexJl1DWGNRBEW4nDzuKQeFvQZadYIQQdkVGIawMjVDgqVqwiRUEnxMy1iBEk7HhisJVJgQsJ+5/VXj248Uv27/cXL6/vDn5uNlCUt4LwahkHTUmylUtAkxwK1nLjEk0akL9V2NyMNxKjQqR2uS+kGFKd47GhVLomaJxFG6gcTE9RPHg8PXLibuIBjOyiXbrsR5lGhd7eEOkNxVmaBNflApSBFFB7tFLxgS2PDAmseO9wsrrkCRESqE3OElgIqw8OklCbBR7yEXkNBk/IaRAll0bE8EtrUBlofBTpYN7OUlkdjK2bGSZURAba4IY6dGXhKZ5FpxUaJpngVQQAxYoBTFV8ISCoHGwqfGWWwhyoZOJMWAiA8lSuyGRf2Sp7bDwniSUsF14TxJKpy68J4nh8p4k9FSASDbyFG5io8pQNnzhGRQw9RY2SguJawYh5gnp1wyCnxgxZCFLvvIewAwCgViqYQk7G6hLIekd1KXMJZbADI6kNhDBBuRKh2neSI/ZYyYC8reruwHwds8YIZkeMwgjB2nS3EEaY6zqxoC2Y3iKMtDsjac9JBQ58J4MtsoYIbkeNKpEOwcZA840cMGAC53jCL0FMARdkeeADZ3lCAJbOs0RBOa5dyuPIgyRbVP27OAgFM+ui5mU5bkSsElg6S3W1PAPLzk2qw0UsIHC+4qYbpzg32LD6egAj+W0TiffPMbcDpWf/JY+ebn+tAXapseT+7JzatdBeyByc0yaWBqIfJxHrNra4HB+7Ej2OPEePminmUcG51ZRXXtQKTgTkSnc3PJyMUMzzHxq2MvgebZchr/T3EG79HrJ72F2r51I77GFMmUvuL6YKRM8Ro+GgKV9e3ZzdlX8g06UhxkB3ZdDPj1HCv96CHwVwKfBgtoO7LwOX+I/7ZLy5hhgvt3EjbRQYA0dD75UBToefDKsqbwtMIFPgDVDDSthtfTsvUiHQYQUV3REBIcYHJI4TL0X8VMjsZfIU4EIkxBWeHQCPg1y6IOYunSC/1kHExzQquHGSLtEBnwEFuVILbqjRMEVRa26CNCYPe0l0hBhXTMozDkmCaUeQBUlSwc7UdNJTg3UoqaT+HgqDC14lajKhYgqapWJ91gthsxz1hqHIRfVF4byS00eaF8YS6w2mX9gBWo7C2/0MW1np/rCfi5fWKiBhqqNj9KiahPczMoLApOFl/y2hiUHYY0FjbzILYDTqCjv+TGDKEK6AWgRxarhTlTzxamhXlMrjqdP2r0MIba7qBkEwfmvzYvCx2RhOYVC29W1oCgEANVOy6FXsO92LzGIbcGCLRjBZYdmrB2Ep1vYOmMHJ0eO3byRY0vkG1lH9lLIpUXHJsqxajd3rNrS2UlPBxfUyjN/6kKnKJ+Fi0IbIQ8XHH8jZOKCVstw73zp604iOx45YMhePRNBRdTsXroQie8x/MifX0Cd80lDqM4zHaIHlcFXOQOVQaQNZU4ZRN5Q2Uc+iGV5LF/DcvJpBHskYRmKnoEcriBAg+MV5bNC7JsXYvlEJMsOmeJEVy1MeDhWNX2n+8tg353hQ/8ehFb8ZcxcnfCODJxkzsuueJzZFXeKvwz2Unh9ho5Nkl3xOLsrTuQp2UL2swjQ2Oh4vmawiRiy4ZEThmxVlxB6uWa9o8PwWL6+9fzjNVTb/PM1VNtRDcOnmcLw1ifa3wVHWmCUBcdD8KSx8Qg8L4KpvPiyQfCdYw3Lyv4uOHuIBKInpxQbrqC40uB4BdmpRPUSBT+wahJJiG2Dmsh8pBtVgeIK1yw58mm7Bnv8ZKPMqoBqIiquMDZ+UXGFsfkXlVAwCK24tqBCIh8bRQ1FD+yihpL56CsKrfirmMqTEtjFDCUJDmvGkIW4bsGQeVe1gJTHclwXejxnk+CwgtoWIrqgtpPoCtthLlc4CR4rqDbBY8XUlgWPtfKCyWbBY801LN1jBSdRVjxWbLiy4rGC4xXUCO03dt4ek81Rdp/RQUpwNnjVkjKck16FUDzY2iwpSkmEKphQFKHazWLh5PYqhJN9aNAi+AyiUp28lRYEQhRw9hahCii45hSZlPZe9vkC1nvZSExSexHISmwRmGoxjbq9LCU2gl3mjmC7wchnDszs3SCk8BcQ2vHHGRRaeBCKTVY3KLn7oGnxT0LtgCHzqfsWq8s2ZPHQYQ1WvkRN4P9WMwfxjVAfBdO54RP4QZ0b+r0nqgz+vSeqDD4tH1UG/97TVt7NOSMUPBlqWDJFisVeETkjPAZFh0t4DAqOlx3U0wGqF6UkWNUkrMD8V7UJ6+hwOtxp2QG2Bmwh0DF2WHjBAUbNTWA5ASeJlWkArZ3Xt3Z7eUUAo4c9+LjcOdmz/bo/M3i2TsjZBU2CSD2yhTMJxyftWqxkFsNP9ICMFbdyarquxapy4QxGrqqSw8uG49N1UW3zJH+otosakHYzBaQdznGUuJEm8ocyNx5EzbHMjYfnGQFt5b2V8zwloLU1rCC7j9iDC+ej3AI4P5mCYwNpEIrvC1pEkR1UUPNhkKP1rm8+tQsyxSBqFEFxqGuzJAgONTpIAiFLdWUIgu+MyinTacMjprjQYOFSgZ4FXCGCRI19ABzgUHFRIMcGVRQNHYBFTSfKZNeo6UQ+xAtDCyFeVOVCiBe0yiiEeD2GLIR4A4ZM8/3ZAI6hHNyFHse5JAR3MW0nIbiLaTtZ9YAQ5zogJCEMDKpNCAODahPCwJWHVS4JYWBfw1J8YFCZig8MarOgCRZVJWaY9K8OoQRyawORFb+zKhlM+FeH8HzCB2gYOcguIbhwZ93p9GALitOJGXdWnE5Q80UOCYeZQ8JFcUmxXhaBMRAcm2LlGHSYPQZdZI5B1MqL5517cIqWwLveKLTAMYiOfxKgQavlSQZtxJALjwzlznuaEslV8f1BfKPiRwyfpxrEdO73koeA431d69PJZH7wdLwc1A7PKIhqR/BgK8/L/MAzCtpYw1JcVrDLSsoCNgv3coQA6m6bDnadrnL25B+nuVO0vVGc4dqgGqGgYdXa8CpmT14x9kDLGyEIi0LzHNk2gtCKIwzateIIY7PR6I5wntcR9lZxhLFeWsURxsbG6o5wntsR9kTZNFvIfiphXHB0Au+WQS/hvOXfq6HIia7BjCJnxWEqynWIt3wpw29bOtgLx9cyBPVDJByFKvJBO3R8NUNUG44uwIgiC4FaEFkI1FbeOXknuLm5hkXss4bssuL1grZFeL2Ok5rhGbIkNBHYJRcIIlPoycEGoRU/t2ZuXkkvqM0DgkrIkEuM1yO92Fsd7+UiMDaDLSh+Ljb/vPDQDIQOgxx9BDUfhNQCUOVBybEtmF6EnAJUasUZBUeTJ09w0KMdT3AJORI50c4WipxpZwtFLrSzBSITOT6JRObzZlFknh0XRXa8u+Qq72J8FJgRUDkD78U47NmKZ5J5Ho0NeqPgmWyeuh0fhhYIbWGNCDXRUGwimccUFpsI5AwsNrEVGhabCMyw1p0Egi8Ym9gNPYtNBGcCi01cT0YWm3hzws5LginIsvMyC/xeB7HfvX3z0/iD6zen33+/rVEd3m6LpoZ3b+8/bV+57T5tf/p2eyuz/bT76f2nEWF1s/w8SvL+4nZ5tVmtt0JcnI3SjD/7y+WH24vl4vR08X+WFxeXPy3+3+X18mxz/vfFn87Oby43v4zf/XG5ud7JE6ItvpTgyuhgDWYUdjW637s5ulXCE/7Ysw/L6/PN6uquI2++u1ouPyzuGzOLj3fYi4+Xm8Xn1YfFp1FVv/th/cP6r5vxK7veny6C//3n1Xr88Xerfy5PF84ufh7/s/3Wn7fXkqc/rBcni+//dnn1bvHH3e3P5Xp1vjhfbc5vVzcLm4btn+996Q8ffjxbn49ifPWVsYfX67Oru2Sj1YfHHeSedG3s5dn768uL25vlyfZ7V6v1pzenN5vb5dj988v1dmj+9eZ69Wl9drH924dLsW2PTz7vevzmSVNmO6I7a1kt7/7y65pCtEMFbZ6WhsUe9/FkW9B+TMNC0rKEUA+r7FeF+L4YWurSIPKhSaRfiXfCEVieow2Slidow+rD0Q+IzNzDa3jqRShNRyioA2UWGTxqUBP3YAFQT9sjpoZA42JqgC+qI6UGNoYXa0IfrrJKTyNMyfz0xNj/4Qe2pSZupUYWqeVSk7pS6gROYnCc3I6PyYO1EHhgbAT5q2OQ2pjGBUl2xe0+zbUf2Myurxjff6HXQSxncxAXrIgRKbGrLKSMvYvk6Sv8VLWf6ZRHx/u6mNa9uIBF8KUqu+4m8J0aoffcovek+nWzzWOX6U0AVGLh12ow85MHBvPj6MUauwviXVzsZsyJm4AZ5rKevVvt5zJl812nDt4FBHUKzNiLyFsUNvKJB8aGnn/bYLDbAv5pg4HCHmFg/QUDXfgEIaiECWxFj8FARJf4rXbk9OEFn+GAbQBpf4F/zgCqPopug8Go7UJi/QaDxcZDFhwHUfmF3rfBTkRhf8UWF+Le+wkZspgolO+AAnpRqMoMhfSiVzdvN1vENtBLMsQLFvlQMDgYfDAYHIxML8aYJoq6h1gEPgkVm7GgO5+ggik6WXrlxbhtklO3DIx+JnnZTZ1tvqbAL/mg9gQHGLQkwQMGTUlwgaEgYxJcYCjImAd1yY9zmVAWvGVIaZm/hAWV5jrVu8++U7n7rJ9o5xtnZUJjalMmNKa33KnOcS6dyhwX/kwLhZOLMEshTRRhlmKacKqjAwXCcdqMyCk6dCouTDBmcBU+S1L9HCxqWzLtoGGx+iKcVzFkMygH1ojlXSgn1oRB2061LM3gOtWyNIN8aC2z5aEM/KkVevlkBuHYCg5IopcvUOSsLrsZwy9KMFGp4GXM0KlqpjGGXtKw91TGWHUxzmADToknavrXD7jzzW0jnHDRsVI8YtDAFJcYW3BN7lQhzJjSqUKYseox9+uqIg2GtJc5NX0vebg8iqEZOYzp0BEhlQq0ACWZCjWB0KksihESqjASaGMT61dYKEhrbOYzo0GR1fAyVt/DuIH1W0CV7OVL4X6FRtVuXK9SIsapMWeQr904z3ouIJm62cucwh0LdQAivanD3RB2XnChYTg8PGk3pRMnvGFSoyieTuONuqmH2fZCb+kVGks39wKtDjgg/HMBdEACvTaDyojqpgI+oEidyOaNz53I5o0v9EKMpeAbmvSD5NU2wche7HwzN/AvDWAFKg4y+CRHcZAxgwqhEzexCbETN7EJ6puDrwkKWwxJ8KVBvfEPD0C9Rd6Lhi5FjEAjAiojCj4zqAxHr6TYxYWJcgBrRvtk2Ec8OSZCAAsdlDQDceZhZCF+hUXGYqGdQSzmnXjaH1AZyaieFSi5MGtByeWTLhjoTp53EFBoZUqCaolzcA8ehuanJEaQZFLuRExmiMQpjpjM5KETMZnJphMxmREyojCuKEOkREVSZj8D5dlhmcMMxGSHJ3iOM7CpVaCTSHqGYOc5ONAq2AJLLIpdhm4Ea6YI6RaT1ELeb5mFrCH4gr6i9KHogvwEXdAfP35c7ZjZf5mBM8jEXwtn0PKx2y9CHDT0IQ4yfYiDhj7EQeYFiYO+Hd/O7EGuD3uQ7cMe5PqwB9kXZQ9qHGOBQih0ohDyx0Eh1IM7J/Qh/Imd+IlSJz6l3JU6x5ROjD9DJ4Yi04dR6agohEIvCiHfiUIodaIQiiSF0KwEPnkeZqLGvcaWl6LOGfpQ/5iufEW2E8uSeyniHN+J+Sf0JSyKnXiW5uIRapx1R0UmlHqRCcVOZEKlE5lQflEyoUYTOiZGodauxF7sP6kXX1HuxP6j0AoNR0Ir1J1Gx3ZiAnJ9CYx8L+Kl8HIkOrEXEVDqzGCUe1EvHRetkOlGKzT0ohVyvWiFLEkrNC+nT5iJrqg1Thy7MurE1IkIKPdiLiqduJbS0JlQx/RiArK9uItcL7al2biFGifXkREMuW4EQ7YXwVDoRTDkX5RgqNGOFJah0ItlyPdiGQq9WIb8y7IMtQ527EYIlLqRGOVOjEAK1VA8EqqheZl1bF9CINeLyMj3ol4KvYh1YmdGoNSLyij3Il86Mqqh1I9qKHajGirdqIYySzU0M81PmInDqDUbZogvRq4zpM48QbkXwVHpxcm0lxTVnVrH9KYJst0Yjlw3VqbZ+Iaas9KOjHSo9CMdyt1Ih0w30qHhZUmHWq3puJiHmnvj+nEE+X7MRqEbSVDsRmz0AvRD3bl2bOlFGDR0ZjoyvTiaqBpurUw7rhtfkO9NdRS6sTQdGf2Q60c/ZLvRD4Vu9EOepR+amfrHzsRr1LrTeteZdsf34gsK3SiOYjdaptSZdcfnXoRBvvQiOQpDL2Km+TiIWmfZsRERhX5ERL4bEVHqRkQUX5aIqNmacidmnxchI5qZQCmabsw+L8FGNDeD0mxsRK1GKlESpX6URLEbJVHpRkmUj4aSqA9xkOlGeWR7Ewe5bpxHR0ZJVPpREuVfDyWR60ZJZLtREoVulES+PyXR8CukJDJzUxLlfpREpSMl0dCRksh0pCSyHSmJ3K+UkugQbRDFSxQmeIkeqIZ+HLv/qpiJrvY6/iLcRKYPN9HQh5vI9OEmGl6Qm+jQCHdmJ7J92IlcH3Yi24edyL0oO1HzKAv8RL4TP1E4Dn6ieSl5QicKodiH8Sh1pWnKfQh5TOlEIDR0IjwyXXmajoqfyPfiJwqd+IliJ36iRPITNREJNW8LNvchSiqdOHiGrsxBpg/dkX0puibXiYHH9yUOCp34juJLETbNxVDUPJ2PiqMo9uIoSp04inInjqLyohxFzUZ0TCxF7Z2JveiEUi8CpNyJTkjhKTJHwlM0MwuP7cse5DqRHvmX420KvTh4YmfyoNSL9Si/HHPTcfEUDd14ikwvniLbi6fIkTxFbXxC7bHd0IkxKXZi5ompF5dQ7kR+VLpyNqWhFy+P6cUkZHtxH7nOpE2zMRU1T9sj4yqy3biKXC+uIt+Lqyi8KFdRsyUpbEW+F1tR6MVW5HuxFYWXZStqH+7YjVUodWNCyp1ohRS+onQkfEUz8/PYXoxCri8Tku9E4BR6sfPEXnxCqTMRUu7F4HRkfEWxH19R6sZXlLvxFRWWr6iNVqg9jWUIvaiTYi82niH1IhDKnZmPyouROJmhGxeP6cYfZHtTH7mXo3GajbFohky1I+Msyv04i0o3zqKhG2eReVnOonZ7Oi7Wohn64/qRC/l+lEihG7tQ7MaI9AK8RTNT8tjSmUxo6MWCZF6OysnZboQ8rjeXkO9GgxRekMzpyHiLbD/eIteNt8h34y0KLG9RG71Q+5bobS8KJdeNpsd3oxYKvdiQYmcap9SLpMfnXsRCvvQiQwpDZx6n+ZiL2ifwsXEX+X7cRaEbd1Hsxl2UXpa7aAZ7yr2ogF6EvmhexqVoujEBvQR70dyMS7OxF7WbqcRfFPvxF6Vu/EW5G39RORr+orn5hUxnZiTbjV7I9WZGOjL+otyPv6j8eviLbDf+IteNv8h34y8K/fmLzK+Qv2iYm7+o9OMvyh35i0xH/qKhI3+R68hfZH+l/EWH6YUoBqM4wWD03dVy+WFx52Qu7EHqosVvtn+/uN4xKS1/+w2TkU13VETTREbjX50vr69Hv3hxu17dLIwLUyxG337lC4nNwgy5H83R9batexd8dOG7MByFvgxHZl6Go1iDPTiTPI1LUhzNyvMU+/A8pT48T3kenqevTJw6ZxbayLE7u6EPxxPBVRRruL6Nqygy5FHGtVNoVQjxO9FShT4sWnvpNW10Vy3GblInRqrciUGrdGG6skNPiidruvBSWduHRsu6PrRf1vdleAqdiKliJyKt1If4y+ZeTFelEyGVGzpRaDnTh5HK2T4MWs51IZhyfh4CrZaNhkqYaeJ1in14qVJXMq3ciQKsvBCrkx/60FJ505VNy9s+JGA0P1GN5Kplynnfid/Kh140VLEXcVbqxEOVO/FmlZn4rVrsZy+nRqS20pNmZu2H7UQ+pSTLQMPPpMpwhEKhE11WiJ1YrdLLsTjlTkRUpSt/llDHC6QSMi/G4RRtJx6q6PoSaEXfifkrhm6sVrEb91TqxpeVe5FPlU50WWnowyWVzExsWS0barJ9aZxcH/ap5DvRZaXQieArxc4sTqkX/VTuRZhVOlF85WEuQquWmZVNLy6rbHsxTmXXiyUr+16UU6ETSVaOM3FZNRlR6sU2lXvxY5VObFNl6MSPVcxcNFZNV9W2F89Ucb24sYrvRTQVOlFjldiJwSp1ImzKfXmmSid+LIajKMkURfMyNu0zFHXhmmKIijKpbt+J2IvgHeJ5rGI/sqnUjyIrd2ObKr0YsszQiTzKmJkIspoSX4x9Ob4m15d6yvhOnFlCoTbUuOLLsTWl3sxTuRtpVulF9GWHuSismiahNd3Yq6ztRjGlcAqh4+K7cUyFXrxYNs7EXtVmSmkG4qo8F3FVW1dKN2IpJdUKNAMh2Qrle7G92LD4hCuUoMm/IEFT6MUyFTvTY6VexF4uvyA9U+lFMuWHzvxY3vSi9vK2G2eVd92IpbzvRoflQzdmqdiNDSv1IorKM5FhNW2zvvRlaApDJ2opodQbSqRjezF4BdeboMl345YKvfiwQuzF4RXSXHRVTVMs5H5MVaUbnZRS+A0cl2h68UkJld9Qchw3E1NVkylF34vwKXTjqIq9eLVi6kb4lLuRVJVexFppmIukqu0ppelGIpVsN+qr5HqxSCXfi/kqhV78VLEzi1Tqxn+Ve7NIlV4EWHnoxk+VTTcSKSWhClWI68VPRWRUsSxSoRfzFUFBxLJIpW7MV7kbP1XpxSJF5EqRzFfFdCORIjKgWOorJgWK5ZBikqBY7ismD4rmkIodua9SB36qMOz4qRLBT3VHxfSXB/IoipgqTRBT/fHjx9WOceqXXxU71bdid6aoWj42+OvmqRr68FRBsL4T/VXow9YV+xBKpT70VzPxVB2y818pWRV4e2M6sUrZTixYrhNrl+9EKhU6kWDNRVbVbPECY5XvxFgVjoOxal6SJtOJVMr24cByXYm7fCeKptCJUip2osBKfZm7jomxyvdirAqdGKtiJ8aqRDJWNVFLNW8LeKk3jjordCJmil3ppFIfDqz8UhxepRMt09CXTcp0IsGyL8XiNRdtVfN0PiruqtiLuyp14q7KnbiryotyVzUb0TERWLV3xvYim3K96LF8L7Kp0Iseqz+L1bwcTSF35ZYKpQ8l1l6CVW9WL6GcG8h2ZDtTS7lenFj+5Xi9jovFaujGYmV6sVjZXixWjmSxamObat79kunEp2V7UTe5XmRTvhM7VuhL6hU7ETel1ItqKvcixyp9Wb3mo7JqnrZHxmdlu/FZuV58Vr4Xn1V4UT6rdktKvbinci+2rNKLe2roxZY1G6lV+7227cY/5bpxZvleBFShF2VWf2areYmcSu7EPVVKV86sfWqrWbm+9pmt5iZxst2Ip1xvzizfje7ryJitYj9mq9SN2Sp3Y7YqLLNVGwFVezKLMb1Itmw36ibXi23Kd6bJCi/H+BV7ETeZ1I1sKvfmySovxvk1H71V+xQ/No6r3I/jqnTjuBq6cVyZl+W4msGejoroaob+lH6UVEM/Ii3TjZPKduPRegG2q7mJnEJnCqrYizsrvSABWO5F4+RKbwaqoRt5lnk5CrBjY7uy/diuXDe2K9+N7SqwbFdtpFTtW6LPvYi3Sjd+p6EbJ5XpRaNlO/N/uW7sTr4bI1XoxqIVexOAzUZ51T6Bj433yvfjvQrdeK9iN96r9LK8V+32FH03JqmXYL+ambAr9SKSehHyq5kJu+Yjv5rhaabpR1Nl+5FruW48Vb4bt9YLMGDNzVCVOnNr5V4EVXLCFkxTdWQMWLkfA1b59TBg2W4MWK4bA5bvxoAVujFgkWxSR8GARbJ2EQxYpR8DVu7IgGU6MmANHRmwXEcGLPsrZcDao3vSaLDyBA3WA5XVj2P3f1VEWIcE70yFdbXX5K+bDMv0IcPCnlP5PiRboQ8lWOzDWpX6cGzNRIbVVAn3aHiwsAsS04muynai13K9+MB8J76q0Ilfay4erDam8U5UVbkTtVZ3Cqwe3E+mD2GV7cSv5Trxgfm+1E+hE2NV7MSwlToxgh0TBVboRYHlO1FgpU4UWJGkwJqVecrPw6zVstG48FKET7EPYVXqyrKVO3GDlZeiexo68VWZvjRbthM72FzsVy1T7qiIr1Iv4qvYifiqdCK+yi9KfNViP8fEedXUD9uLlcr14tHyvVipQi8erf50V73pnfBEK46hKpSuxFpx6EQIFs3LkTvZXgRVrjOzlu9FCXZcdFemG93V0IvuyvWiu7Ik3dW8JFNmJhqtlg012b78Tq4TLZXvxaMVejF/xb70Tin14qXKvZi0Sifur/mYrlpm1pGRXLluJFe2F8lV6EVy5V+U5KrJiFIvGqrcizir9KKhGnoRZ83Gb9V0VW27EVC5bqRZvhcDVejFmdWf2mpWIqeSuxJQldKJOGuf2Wperq99aqu5WZxsbwIq1407y3fj+zoyaqvUj9oqdqO2Kt2orTJLbTUzn5SZiTOrKfHF2JejcHKd2ah8Lxqt0I35K74YgZNJvcmocjcerdKL+2s+VqumSXhshFalH6FV7kZoZboRWg0vS2jVZkpHxWXV1pXSj2tq6MeQZbqRTdluBFkvQGPVn7Mp9CKeip0Zs1I3rq/8coxNrnTjnRp6U2aZXmxfx0Zj5frRWNluNFahG42VZ2msZuaOyjPxYzVts750Jm0aerFNmW4EWbYbqZfrzdnku9FNhW4UWbEbrddsDFZNU+zYyKtCP/Iq3428KnUjr4ovS17VZErR9+KAegnaqrmptlIvDqgX4a2amWtrPt6qtqeUph+vlO3HhuW6EUv5bmRYL0BZ1YdYKnWjxMqdiaWEzCuU/OnIKKtKP8qq/OuhrHLdKKtsN8qq0I2yynejrCLpn46Csoqk2SqmH6+U7ceG5TrSSvmOdFihI61U7EiHdSSUVV8QM2mkVWWCtOq7rZv5RPq0z1a1XD+wVV3dbq4unuGritvI4zeUVc7uU1Y9kE398WLUz+ZyvTp/ZKSyg0sPf1+lrTr0pQNYZkhTSA9f6cNste+3f0Fo9fbAl98vz0akva9ZnPdq+fPVaFnXJ7NyKVkavlCEVY7Gf1zQWEYsuAFDNRD4BizVQOQbcLUG/LN0WTQ+yZsF43vGRAuPH6gB2Ms2o1sYSJ4sWkXgDsbPY1OlcvPPU2fBDVAUdMbrDRjs6kJXkSFJteAGKII6k/QGwJnw7OWYq596nqEFeyaSdecV3W17d/vxgT11bPbfj18cv7f+/1brH0e5tx7R7g+fPo0mdH1zdv6PUZ/bzh38jan+xlZ/4/797t/j/56lBLvf2Z/xz3cqmrfDptphs9fhivB2kF0L6N7Z6q4LdGVurb4zbzvwPP0YDekqkF7ffh1LPvbQwvXVONEOh7E8MYBR37YcSUNGL8lQGpEVfJNCNVD0JRlqwPGT1BqqAX6W2oFqwJJ7irWve1Nx/CJkHTUi/JJkLdUA72rZwCwcLuoNQEuf41cm6ykV5UnPwaZj9Rz20g7f317845lbE8dwlXphrWO4HvdSDifETpTYVvZzPEnoNulkxmMzFe9l5WBj2hCe8SQvHO2/YeljPuldCCRTHO3HgV0oup8FdSEMup+FNQCvDY/eD7Q4BKvvVJ4kgpsS3FOCe13wQPLBTe6AR7es7WVPgjtgJCnn2B0QSuYJWcaHMnpCEeNH6XW6+nvZnqBHAplR/PZM15eCN+ouEGRXsSEuA02M6PUGIkmqh80M89qnRtRdikhSBtINJJI5kPZZEskgSDcQSSZBMnTzSo02Gd1pwkakwZ2EbCo52UOAcheTl/EzyYfIeSDPsT7/R5tsbGXa3kssnoxPlGNz5Pdylyc8sMdTPZb/m4ruURSSNZJuAJpK2aguy2udS3t52VPGlChjyk5w6B+9lSx49NkrLeaWFgO0EG2v3Hcm9u/nOTDRKA70eCIn1RF6tVMh02EpbCSK7gBlkraTbqCQ9J2Tca+j2y6LZeNeWCWBorudGEF80f1OjCd+L/UdDOWAmokNsRytJEJJes4xNhgZ9xjv6ZqPaQ4U2mU0aCJqg0+HqX6fjpRvAktTHHg3CFZQkyN0QEUIy87Q5AupjQbalcEWlH0aU3RrRpGTvneitpUbmjAsrenkBn18q9M+dyq6RVuWO5XeQsFy0lZvAaNCMk4ND7lXmuG8l5eP+jWWJXilvQzHEr3SLYDmlHhXwNLMrvw+DeqnIUQFKsgOcgzptU44a3jvydK8tPSVFzrgrqEJx/LU8s9gHEtYyzdhWeZa2L/DFlarB6te7Zzjo1XoYDTEq0BLcg0RK3A+uAbXL7A8u3QLnuXbJV2/+EpnhdNzd9FRD0QgKBzdUcs1OJig0TbkBqNj0OJogr0oshf4Wuee8BbiyY8CKXZNQxOBpWLm/SiwCdfQhGepmVmH6tWab8MLMHRUGt6AobaViEjg8W1PPtORQIy2VHjuYbl6WEF/CgaWxQr0YzBQOXsvPqZ9mnx0RhOc7tOAY9vgVoJjG/iwHMhRG2KDt5RY/my+CVBBmY8xJZobm/cqEsuRzW/5ieXK5nsRWdJsvhc0ezYcYwKJqz0fMKEpsfltPbLc2HwTiSXJnvYcjm8TiLzngJEQxwbPobCE3HQLIN2xUQNJ5ZWeBpKlfS2Q07rBWaGJxOkWaEJx2FlBebNbnBVQPy3OCk0vzkaPXu2EK7x/h9KatwSmQA5y0+AZZZZBne9FYZnU+V6ATXjev8sspTob8nqtcy4LaXWZ5Yrn/VVwPrSk1RWWPZ51zMACo0V3/cA6o0V1/Z6r0fqfTZCpMwOgo07QI91DHtNRq+gOJmq0DRRJ6Bg0OJpoL5LqBb7eudfCfgmOSkO0D7MtOzRE+9AmGhxOTFF2kFkwX6v52sE1kDyCo9JAcoXaFkFzdXzbkx1ooiuswLcddKorrKKyHXSyK6ywsh0KG9cClbP3hmOalMH6g7zTpoUE6rl65NUX3NYQV5/3RUuPydaNoyNxYLVzaxr4pUBzNy1uHkjoHumwEqygBjYmVPoWdwgcgxY6cJD0vsUdwhRleS7Mb4U/uK5ZS8dIUOQWZwFUS4uzAA4u4ywc3wIqFAywVHlsaxu8Bo+1oJZAea54+X+0n37giQPhaATldbR1A79VY1TG1jU8kAet2LVULsHMmH7tYF69HTvPezeoTYUW2oIDQw444y62sBaIbSaGw8nGwzV4Mu9+eMhJoN8hWPvaJ4UfeI8NGwzfwJUJLoK+gS0TXMq9o+MjEVOPp4ETBhx0FyphOmlwAyPWQlKdtPxa53GmQ1WgnfIxMMxOQ0N5OsxOgyHCVenoTluh4WoVm2ZBCIglsGZdS0AMHN6WgBiooCh72a91IQqJ97JRm8pNXnaSTqKhNLnZWqN43Qg7cKtuNLKL/FotOgpBTXAwWoKa2AoWW4Ka2DocmaDm8W2zscGbLZiCGoKaGWshMyViH+sODsiqG1tSQDDxU8udB9hEw4MvcJhTw4Ovb5s4PBjCg4jHYsNQHXjbUMABbYH32wLZAj+lPdkCP6UT2QJ/mxnJFopevxtrQXhLUMgWhGltyCaEaT2QTbiGGuJgEw3nMbSJ0FBOHGxCyEOtrx0HV3EhGf+pCSxlTEjGN/W5fXijyA27NtpGadi2D7bx7u2bn8YfbD3D78c1PLwdTSq8e3v3723S1PbD9mdvtzcR2w+7H95/enfnLm7d0Ivb5dVmtd4KcHE2SjL+7C87r3Jxerr4butlLu4/m8Wfzs63zuLCjl/+cbm53gkToi2+lOCKD3EwW090PPT9fOcz/WuvgbFbH5bX55vV1V0v3vzx48fV+Wq5Pv9l8fmhiY/3TXy83CyW6w+LT6PSFr+5ut1cjb++3n17+dvf/bD+Yf3Xzfg3O4WcLuL26PX7z6vxx9+t/rk8XTi7+Hn8z/Z7f95e0Zz+sD5ZfP+3y6t3iz9ejGrcXK5X54vz1eb8dnWzsINLD3//8LU/fPjxbGzrw7NfOoBlhjSF9PCVUYvX67Ork5vLk0+bO+9+Z7/3D7hHTZ69v768uL1Znmy/dzUeP9+c3mxul6OKx7PD3angevVpPZ4dn04Gy0etPpw4n4Zkd9r75i/ujyJPX9uZ186EV8u7Vr5OdpY3K4zcXA/nQcuK03dCTH6v74NYA0HfBaG1vaHSM8SP3vJUFisTpG+w2JJe9L0PpHfXGwArCBhdR9hbGMEdTFQDTvcOMBp/rzeAjXLQVTRgNBMNT2/Bp/V6C5iO1DQ0/2UU9tuN8T/6xZN+YsUS/vUbNyx/GL+QdMeX/cnEGD2hlZbTL+Z5tRx+xxYO3gs1XD5WIGPD+RmLUOrrMvaupaEiMtZASywaacDJFZFf87qs0IcP1LAIiV6GakC4ibNUA0JY3VENCGlfnmqggVUN2gdcAw0GtP65jF9UHt3263R6DSjT0dNlpQJiNZ6mYcVg9WAKpg2CdCIem6l4nXICyrv1Db4Ppv2GSA2Wse8bYjWYjhpiNWAXGt4iQqMQGpjAsAb4d4jQ4hAa0sIxwR2dEYQJ3pCsA1llIFJ1jm5ZC3qiDpQrFfQ0HShRKtCkq1CGdihiJCm94hMLnmCZmLEQaKUzY6IHOKXxp5hJePElZCgaatLFhtAMNOtiUFO4X/X8aIiwY+PeEGDHxr2BDQJroCEWBakoybGo12y5qeHZITTuqcG7xMbdyX4IlAvbkOEJJcKmoPKnD6/ZbiNBCVUO3R+khMcsyrE596mhSh1m9Q3FkCGzzzxlBUbJnY3Mj/6aJ1S29EM0cDwcQ4JghkNz9UA6LvGqLAuefG6iqJBajDLH+Ku220RHxSCa8RYKcGwBbCiFDC3hheeqgDRTDB4VO7qNszQUVoYylYrujhoo4a3QTBgGynMrga5Kg+FGogCgPTp7SXoaMjacuSFGdcAkgffSpcG3M2Di6tDQBJb3ORi+UBCYzTjwvhAM7Vo8mQOqAcbbDL7FmVEbDXw1Fiwhd2gpWAcaV0uNEXCKZL5ACqifQlTbO7oV15iGknVQ5owRst4fW3BYC5bepKGsImOcGi1yrzkT2njauQHHI+j+AWisUW8BNNaWlzhgJxriVWgvCu8PWGzTtoMcUnrVsw5nzjaJHZKWcsGYzdqWinWYzSqZ9oVsIjQ0ASpKj1y97unBh67AXcm21K8D7aohfAXaleMDWKB+XIMD6DHZG+JMAWtB9gTja550rqGCMTj0gQh4haM7frkGfxO03BZ/ExyDFn8T7EWRncJXPQF9Aw0KOPq+pWIyNvq+pWIy2IRraAJUlJc9t9dtw6HB+QFHvyXICY5+IuKEx7dReb2gnYmYgvRHZCZh1A/0MzIDcaWaQD8kQ4EbeHkwrQentwBq3RMeWj46w29h8kbHoKGCMToIiY/XYczXBn86YhIL3fCMDNR9bHhIhjbR4iBhwxtbHCSwCcfHT7BFroUGGhW+xYUARzny8RNQP4zncHwLaGzwHDKm+gbPAcoeM4n3HKDsLpOMGlcqr/lIkCztcIHj0eAOYcaaGkJioLG2eCxgJ1o8FrAXgseSQf60LAeTXvesK7ynBw5JbolTYQaVG1j20SZa7kmxmZdb4lRgE3qc6lVPjyzk4GG7Um4JT4Gm25KDB9qVkIMH6kd3AC2WP1j0NDmLJUEW1RO8ryD+Wlk3GwrRgUNP0C3dj/UxHb+K7m+ilttCNwmOQYO/ifYiyeX0XvcEbOHVBEe/IQyIjb4dGsKAaBMtVZ6w+iB7TynYAnqv2Ybt0FLrDhz9llp34Ogzte6ObqOyQ0OtO4zLeWiodQdydNM0WhbjFt57ZTLNwGD9QQpnQ/NKgcIZppaxPzrDMy3EVQdMb/r1uTUN1FWgsZuWIseYtZvAl2gGSdFN5Cv1otAN7E6o7lt8IlD3LWzjWBO2xSfCFGV5ls1vhT+4JtkGJiRUPy1eA6gfz5f3BfXDOAvHt2bbBmfBY6pvcBYC1oJaZuUe/5U667a0bNdBqnnuGl7Yg/YmvJIwpME5y+/XGN+zpd9HmP8x5p3ePO/noEMSGCooGw+eGQ68TyAYFA6YPuAcH3ixQBAoiG1mOXLyuu238A6chxwU4eWCDdx66BvoOMFV3VvegQP1o1Mf2YjJrnNx2oS1EOhwScKUE2ngiAEn1WfLr3mZ8JkOPYEDXWhgbKBDQ7k9bHoFJmqWju4E1vA0AVwdQkuQDByDliAZ2AshSIalx9sQZaf7Va9GxGOIxA5JbvKXk3Q6DaXJYdYajTID/Os2viiEPLG9MLaEPLHFLLaEPLElOQohT1A/TMjz+Dbc2BDyzJjqG0KeBWshM3V6H+sdDsjSG1uyRAq2vKeWKxFMRanhtRg4zqnhtRjahH46dVCZdSu8o3BkC3xemydb4Kd0IFvgp3QkW+DvOhPZAj+xC9dC1g97aAvCrB7IJoRZbcgmGk5kaBO+oeA62ISQr/o47bBsLyFh39Rn9uEmUkNFdlBRQhpDffU4vKPmhl0bbaM07NoH23j39s1P4w+2nuH34xoe3o4TI7x7e/fvba7W9sP2Z2+3tzDbD7sf3n96d+cubt3Qi9vl1Wa13gpwcTZKMv7sLzuvcnF6uvjj47locf9Ds/jT2fnWY1zY8S9+XG6udxKFaIsvJbjiQxzM1h0dj3/bDW93dHlqZezbh+X1+WZ1ddeVN3/djMBjv34c9bX4/NDIx/tGPl5uFsv1h8WnUXeL31zdbq7GX1/vRFr+9nc/rH9YP/z95fp0EbcHvN9/Xo0//m71z+XpwtnFz+N/tt/78/bi5fSH9cni+79dXr1b/PFi1Obmcr06X5yvNue3q5uFHVx6+PuHr/3hw49nY1sfnv3SASwzpCmkh6+Merxen12d3FyefNrcOfk7M75/+j3q8uz99eXF7c3yZPu9q/GQ++b0ZnO7HJU8HiHuDgfXq0/r8XD6dEC42tPrw6H2aVh2o/LN39yfSZ6+trOznS2vlnftfJ0Yrb8khZYYedvF6NmdviViDXh9Q8QaaHloCzXQUGsaYi9POj60SzUUmsbqOejbLFpCQG8Be9xgdBUNIHsv30KqtXCY4FN3EzAdeb0BjMQ/6CrCXhc1lCzFVNSQ1ArOBDVbzX8Z7T20Nf5Hv4/Cb/nc8b3J0O/4sCxm/dyNpVg2XO+NDRzMeGk4AlcgW4684LUUE3b1xADGhkMoFkjUV2bs8UpDKWasgZawNNKAkJtqDdWAkCY1UA3IzxZf997ihCC7owZGyACzVAMNvGzQ+uEamDOgFVCg1366t4RUlPFby6NzIPD00Ae7DIhOvM7GAWWGeprPFRNbT5mCsk09wVQRj81UvM5TgY1pQ7AG035DsAZL6fcNVP6YjhriNWAXGp4tQl0IDURiWAN8/g60OISG7B3IPoOjE2swwRuYDTCNE3k7R7esBToTHcpPDnqqDpTpFXTSVijNKxQxmpRetccfaQoHyJoOMFTjTyqT8N4q6p4QZF6xIUoDzY/YkDiO9SCoud2vfIZE3cHABibpDWCm1UAegTXQEJGCVJTk1PDXbbup4T0iNjANPiZkWg1pn1B2bNKfJEJ5qymodOzD67bcSNBTlUOXICnhsYtybE5+yvQbL4wXW0h9NdSEyg3EFtCMykbmWn/dUypb+pEaZlMHkniJ12JZ8PYP5PQSj+KkFinuCzMcWpFypAM9EFt1TjK9+iufETx/ODYgDcWVoTWwNFBZQKt4MXiE7Og2z2Lp2jpQUlfRfVGDJR/qzqiBkrpKoKvcYJqJDeGeA6IDz4VL0nOVscHIRJVBe3RzoPDFbtAE1gYPD1O9GRqoy7CZYAbeG4IV1OQPHVARMB3M0OQSqY0KBUqw/NlBKH4HIrfUJQFtKzc0Ac6QQpTwO7rVyRi+/B2U22KE7PfHhcNh6fVWb8FiLTg1ZuRed2a08bR7A1pV0J0N0Kqi3gJoVUL5O4tteAo7NTvrGuJWoILsIAeWXvm8w0m3TSJNy7bUIQbHvaUAHma9SkI+uYDY0NAEqCg+fgWur1aPYL32qSeUwAPHpCGIBRqUawhjgdPCNfiDAWuhwR/0WAuyPxhf9+RwDZWRwcEPRJAoHN0xzDV4naDtNmQYo2PQ4n2CvSiya/jKp6BvYEoBB8e3lGHGTMy3lGEGm3ANTYCK0sswv3YrbnhVhg5OS0Vm0MQSETM8vs3K06XwDETjabxe7NlASWwm6M/LTMRaoB+YgcrZe0Uy7eHkozMagfI7k2Pb4GSCY8sTfhuMXdqEhjLIqH5aPEBQQZmPP6EKanheBiooNjwwQ5tocZGwMYgtLhLYhOPjT9giJ1BEo8gtngOolhbPAbQfxnM4vk0g8p5Dxka3wXMoGAtTg+eQsRaMGl0qr/tQkCztcmFWlRp8FtCqGnwW0KoEnwXLNjapxWcB9dPis4AKynJI6bXPu8J7e6Bp5ZZoFTbuuYGNH22i5c4UmyC5JVoFNuF5bw9bX3OQ42CvfOplISsPHJOWrDxwWrRk5YE2q/uDFsv7K7o/aLHkxaL6g/cVyF8vL2dD/Tpw8Ak6pnvIYzqGFd3rRG23gZIJHYMG7xPtRZKr8L32KdjCvQkOTkNAEDMxOzQEBNEmWmpCYeVEBpmD85VbsR1aauKBg9NAsYWaGFMczxwfUTVf8Blj7x0aauJhDMeDTrVlMZLmgS+SjCln713INO2D9QfJr00L99QBBUw/DreGuCS9r8Z+TLZuHF9RGOQJNy31kDFzNy1OH8gqH/n6vqiCGtifUOlbvCJwDFo4yUHm/RavCFOUFSrpOmhds5avQQsitzgLoFpanAVwcBln4fgWUNtQSTdgCmrwGjzWglqO5b4Hr9Zdt6XF3whSrXQ38Ds2xqdsXcPbe9CYXUsVFcya6TcT5n/M+V5znvd1UNMKLcQIB0YecM1dbOFFENtMDFmUjYfLAmXeGfGQy0C/ZrD2f+bGXV2lgXfjsDHxDUyd4JLoG7g6wYXdOzpoEjH1eBo4YcBB96sSppMG3zBiLSTVc8uvfDpnOowFmisfH8PMNTTUz8PMNRgilJWO7iQWGi5hsdkWhGBZAovqtQTLwOFtCZaBCoqy6/3K16OQeNcbNa3c5Hon6ZQaSpPvrTWKV7SwA7f4RiP7za/csKMQ/gTHpCX8ia1nsSX8ia3KkQl/Ht+mGxtc3IIpqCH8mbEWMlPR9rE+4oAsvrElZwQTP7XcjoBNNDwiA4c5NTwi+7aJw4MhvK54rI0MVa+3DTUl0BZ4Ly6QLfBT2pMt8FM6kS3w956RbKHo5caxFoQXCYVsQZjWhmxCmNYD2YRrKHkONtFwOkObCA3Vz8EmhPzV+tpxcBUXcvmfmsCSy4RcflOf24c3itywa6NtlIZt+2Ab796++Wn8wdYz/H5cw8Pb0aTCu7d3/96mV20/bH/2dntLsf2w++H9p3d37uLWDb24XV5tVuutABdnoyTjz/6y8yoXp6eLv+6dXxb3PzaLP52db33GhR3/5sfl5nonU4i2+FKCKz7EwWwd0vEIuN1Udwp5amfs3Yfl9flmdXXXmTfuZ7/4X4u8+Hy2Wi/e317/sP5h/d3qn8vThbOLn8f/jM1cr8+uTm4uTz5t7rzg3TjfP54emzp7f315cXuzPNl+72o8rb05vdncLkcZRh/7znu+Xn1aj2esJw/6K/0/CWy2yt0N4Gp597df5wa/rWB8O4a1et2HrYTGxXKPHIzrKHk9jGsp3EDLi+kh0vJiuAnGDZQeMo2LyVtgXE/Ju5fUCfuQIPEwDJw4iS0NDEqMz7nISexpYFBifNYVTuJIA4MS4/MucxJnGhiUGJ95T34xtnUMPDK4KRG7HbctWcsjgzLjs89wW5P1PDKoDXz+GW7bs5FHBrWBz0DDrfgWn4KG2/xs4WXGtOEGXmYQmZiD3KrviDnI7YDO8TKD2vC8zCAyMQe5TdARc5DbU1ziZQaRMy8zqA18Dlpu5fcDj4xpw+Nz0HJ7t7c8MqgNfA5a8uhHnP24HdYHXmZQz5GXGUTG56DlVn6Pz0HL7Va+8DJj2ggDLzOITMxBbk8JxBzk9sHgeJlBZM/LDGqDmIPcnhIijwzKTMxBbrcKmUcGtYHPQcet/HHgkcEgGh/9DBgwH/7EniNER8f9QIk9HagEgQMtMaiKSEsMAvMxUFAVfBAUlJiPgmISJz4Kikmc+CgoKDEfBQUl5qOgoMR8FBSUmI+CghLzUVBQYj4KCkrMR0FBiYUoKIachSgopowsREFBZCEKCmpDiIKCMns+ogjKHHiZQWQhCgpqI/FxP1DmzMcqQeTCy4xpowy8zCCy4eN+mDaK5WOVILIQBQW1IURBQWQhCgoiRx4Z1HPiY5UgshAFBbUhREEDeBEvhEE9CC3EQVGphUAoKrXjY3+o1J4PWKLQgZcaVUjkpUahhWgoqhAhHIpCFx4aVAiRF2MDCS1EREGFELkxNpJSOz5yiUILQVFUIUJUFJVaCIuiUgtxUU+Xg4ehUamFyCgotRVCo6DUlo+NZro8OopcQGQ+Oooi8/mhqDb4DFFUZj5Aisq8xxVTfW/2sLEUCJEPjaKyPs2+6Xe8oa5h4BmvIbJmItcLImsm7vVhovZ3ffAei5AMkHSODq9h5Q+I9JhCKjTQIoPTbi89ZtrgCmBwVc4mw+TLDKR+MmAlj0E8aI7vZco8AzlQlkfkyBhyYSaSZAy5mxBZMoZc9Ik0GUOu+kSezGM0DJU68CE8FDryUqMKEYKlKHTmY22oQgofbAOhiWwZQ26AQQiYotCWj+Sh0I4PuKG69rzUKHTgpc507d76HvAYEIO2FSZZhjyp7GXLTG/l1rQ5j0QCjSW3MiKDxtoJ93EvZ+aZEXTULk6ky1hPOZBMvgy5RBMZM5bcDvdyZgC7C00+JJFGY8k1OyLHxMfIFTTZI+KWPsoJWl/hQz/gQBL5M5ZcSYkMGkuu/0QOjSU3RCKLxpEnFiKP5hEaVUigI1bG0IVhYegBhE50zAqWOvPQqNSFjlqhUhMpNY6UOhsiImYMBGmFwNUheRHng8ivCazW+fw2g5U1IxJsIit0pMNDsKkkIT707LjWN/fM573tNDRRJxSNxaHa3suzAYJN2PRhMmwGVl7Lh4ZgbCGAg5peEV78wtjCm19YJ5EPtMByC+9+YWzh5S+sE+HtL4htiZSbp3LlIHvQILz/hbGF3DdYJ07QCYotxHJgbCEDDta38BIYxhay4GCdZCYKBe03++UFiViR6K9ZIyTFodph8nAs5bFZJg/HsmI7Ph6DGuNeJg4RkNGcNsvk5vgJr80y2TiB1TgV38GmEZOHwy7hRgj0oNhWiPSg1meFUA8stxDrgeUWgj0wthDtgXUihHvAalJWCPcEEFoI96DQQrgHVYgQ7gGldkK4h683B4R7MEjLR2BQaZ0SSQqaZ+KEcA9fig2GDpV90UUmCypC4vGvFw1YGDDzoRdUp4UXGpx/e7k5RKArSD6TV6I9oIq8paJTGKajcqEg+/NKdAfVgfCWEbYT4TUjjJ0EbFQnwotGWG7hTSOKHYRXjahOmDQddhsLSnQH1YkS3Ql0hSxcblQnQZAbxRZeOMLYSnQn0GWjcLlR7CLIDeokDlRUCsM0QpwIlddKES/Rr4zCq0e4JwIDXNWz3EveQRKkoK2dSdLxnG8ZhReOsF6FJ47oTIxFCslp7iWTx8Mu4clQUTQM01JpUpGsQYRHuMDBJHJ3LLusJuGpIyy38NYRljsJES4UOwvYqE4KH+ICC0IynDiPtg1CGz7EhUpteWhUar4cBiw1TwgHSx2Y6FmCIKMS4oqaK5J5gjhY65kPcWEVIYn0nUgKTdDkZNJU9rJ4iBhSlDZ5Iqsn72voIJbjI3aotj0VjoKmD5O8M7DyRiF0hGIr4R3U9LIgN4pdBLkTyNwvUPeDcjsmecez2FaQG9WJE+RGsQXyKlgnQQgdodhRwEZ1kgSdoNhKeAfFLgI2qG8iZcdkFtsI2KBOjKXCUgnCdFLoSPPXHMOjY1jtCLRWmMfmjMDxD4udhMgMaoxZisxITpszAtVVzWtzViC3QjVuuTAPNI2sQGsFy6uEe1BsJdwDWp9Vwj2o3Eq4B5VbCfeg2Eq4B9UJH+6xBqy6xId77ABC8+EeWGo+3ANLLVQ/RaXmwz2w1Ey4xxoIMvJlSlFpkxBJOqRlxDNxfLgH7gcf77GVJGLnByJZylqo7pnhC15COeaOINcppE49z3OFzj/vhUDXs2ZX95m8EO2BVRSZ6BQ2231ikqVA+xOiO7AOioAN2gmTvMPuAUzyDrsJMMk7npXbCcUqUWyB9ArWicB6BWML0R1YJ0J0B8YWiK9gnQjMVyg2QbFj2G0nCtEdVN9RIL+CsQX2K1gnnolKYfsMU6qKPXDEqES8VL+SSephdzcmqcdOeZaxMMlS2NaehJqNoG/JkO6wK3YSSLDQmZicEpIT3UsmmYddwlNgomjYtE+RSZYCbVCp4IgOpkBVDuu3CDUtQbmJ7B3LbpFE+o5jjzRE/s4TNqoTx4e4wLrUTGGrB2i0mDZf0xGGjjw0qpDEh7hQqTMPjUpdmOiZgyqWD0qIy2quCMHDE0itEwk7sdqLg/t84Ys9wkJ7PoaEVqIPSgzJSpt84Qmydho6iJX4iB2qbYrGHJw+Qs1HUF4/CHzmMLYS3gELsA8CIxaMLTBiwTrxQggGlTsIoSMUW2DEgnUiMGLB2FkIwaA6KULoCMQ2ArM5qhMjUJvD2Ep4B8V2Ajaqby+EjlBsgd4c1gnFbw7tN94kKXSk+WueIeAxrHYEinPMY/NWoDhHxWb4d9iF3FopMiM5bd4KFFk1r80zSTzsFmS5MA80jaxAdA7Lq4R7UGwl3INanxLuAeV2SrgHlNsp4R4UWwn3oDoRwj0JhBbCPRGEFsI9qNR8jToYmufDghUihHtQaHxGehKaqJXlSV17IciDQvO8WLBChCgPKjU+GxMLzbNgwQqJvNQoNE+OBSuEZ8eCoXl2LFQhRCJPYaEFMixUI0wez8DKTeyO7PbI5PGw+2MQqM9hbIEcC9ZJEoJ2KLaSX4fqRCDHQrGjQI4FYwvkWKi+o5Jfh2IL5FiwTgRyLBhbIMeCdaLk16HYAjkWrBPh9SQst0COhWInJb8O1EkSSLJgbCtgozohwjnsPs8k8bD7PMPIw+6XSXg0CWMnQW5U30pWHYpdhEgdqJOsJNuh2Eq2HaiTrGTbodhOiDSiOiHmJbunMWk97J7G5PWwPgSR2GPZPY3I7LHsvpOFegQodhHqEaA6KUr0FZVbib6icgvR1wxCC9HXAkIHPtiISi0k26HQQrIdqhC+GgEMLURfMehAZPYETteBSOzxLLQQfUUV4vhgIyo1X4MAhg681KhCIi81Ci1k2KEK4UtMwtBC9BVUiBGiryi0En0FNWKU6CsqtxJ9RbGV6CuqEyX6isotcNfBcgvcdTC2En1FdSIUnkSxrcBdB2ML3HWovq3AXQdjK9FXVCdK9BXFFrjrYJ1EQScothJ9RXWSBWxUboG7DsV2SvQV1IlToq8othJ9RXWiRF9RuZXoKyq3wFgHyx2FCCmKrbxpRnWSBblRbCX6CurEK9FXFFvJegV1QiT1WHa/9Er0FdWJ8rQZlTsIEVIUW4m+ojpRoq+o3Er0FZVbib6Ccgcl+grKHZToKyq3En09JPe7t29WN8vPI877i9vl1Wa13kJcnI1Y48/++/LT6vpmdX69OD1duJ/9/8qL/7q9Hr/w43JzvYMI0RZfyrh4+hCH7TP+1frDctts3Mr9BDoK82F5fb5ZXd21/eYPi5/OLi4W1zeb2/Ob281ycXu9/LC4uVx8WP24+rBcOLv4efuf69U/l4vPlx9uL5ZvF+9vVxc3i9X6evuNm78//OJ3P6x/WH83fvH04c9GGa/XZ1cnN5cnnzarD4/+61MdlbP315cXtzfLk+33rlbrT29OR1GWYwfOL9fXb06//9eb69Wn9dnF9m8fctxvLtfLk63cb556arZK3A3Qann3d1+N1h6h6NPfV8PNQ4WpHgJ5JIWsvOCkQCqSeAjEPg8SIBD3PEiEQPzzIAkCCc+DZAgkPg9SIJD0PMhewOw5lDyBgtlsmUDBjNZMGJzBzNZMzCCDGa6ZsFyDma6ZsF2DGa+ZsF6Dma+ZsF+DGbCZsGCDmbCZsGGL2bCZMGILLrwTVmwxK7YTVmwxK7ZT+wC4/E5YscWs2E5YscWs2E5YscWs2E5YscWs2E5YscWs2E5YscOs2E5YscOs2E5YscOs2E1YscOs2E1YsfMcTM2fCZRDU+O1iBSKraAkrks1mMzBVLk6qD5VamT6gULxFRTDdakGYzmYWp84J7hSgsB7CiVWUALXpRpM5GBqfUpUn0oFJVMouYJSuC5VYMLAwVT6FAx3+qosV4E8xNXOTuQaXMVhF+Fat7hV2FSWrMAtw6aygAZyHa7ikAtxtVvcSlwrVxy5pdhUFtFIrsVVHHIxrnaLW41rFWEitxybykIayfW4ikMuyNVucSuyqSxfkVuSTWUxjeSaXMNJ5KJc61biVuUat23iVmVbiyORq3IVh1yVq93iVuUafUginePKappY77iGQ67K1W5xq7KtLF+ZW5VtZTXN5KpcxSFX5Wq3uFXZVpavzK3KtrKaZnJVruKQq3K1W9yqbCvLV+ZWZVtZTTO5KtdwCrkq17pVuOsOV1m+CrcqV2E4S3a10Lyn7iuq0gTq7qQKE6k7iypMou5PqjCZureowhTqDqUGY4aBurqo4xjqIqWOY7nbizqQ425T6kCeu8GoAwXuRqUOFLlbjDpQ4m5V6kCZu8moAxXuZqUKBF7smUnDBu/2zKRlg9d7dtKywQs+O2nZ4BWfnbRs8JLPTlo2eM1nJy0bvOizk5YNXvXZScsGL/vspGWD13120rLBCz87admW9KNd9QKcPBTWJfLc9c0d0PPZPd89pN6cnv7vbSrOb/68Xi83v4XSe7ztl95zeXuz3Oxl9yzM4v3F5fk/rhdnP5398p+Q63PyMEwnTdk+ZgKF831PmvJ93AQK5/meNGX8hAkUzu89acr5SRMonNd70pb1U6ZgOJ/3pDHvZ8p+DenxnjRm/kzZsCH93ZPG3J8pOzakt3vSmP0zZcuG9HVPGvN/pszZkp7uSWMG0JQ9W9LPPWnMAZqyZ0t6uSeNWUBT9mxJH/ekMQ9oyp4t6eGeNGYCTdmzI/3bk8ZcoEn/wnFO6UljNtCUHYLpQCdTWdKRgxnaEoLshDSZgxmaEoJOJnKlwIygk4lkKTQlyE5IYzkY25QSdDKVLeU5GN+WFGQnpIkcjG9KCjqZypfKHExsSwuyz0uDpgXZ56UJ5GkvN6UFnUwkXqFpQXYChlyMc1NS0MlkshO5GFeTlNjV2LSlBdmpfpHrcS1NKZILci1NKZIrchWHXJKr/SLX5GqiErkoVxOVyFW5ikMuy9V+ketyNVWJXJirqUrkylzDSeTSXOtXItfmarISuThXk5XI1bmKQy7P1X6R63M1XYlcn6vpSuT6XMUh1+dqv8j1uZawlFmH2bWlCNkpHNZltk0pQieTqU/k+lxNWSLX5yoOuT5X+0Wuz9WkJXJ9riYtketzDaeQ63OtX4Vcn6tpS+T6XE1bItfnKg65Plf7Ra7PjblCJ5MZUOT63Jgt9IQzNKULPfXLtuULTeOQeW+2LV/ITuI4LmXNtmUL+UmcwCWt2bZcoTiJk7i0NduWKZQncQqXt2Yb84QmDRrNE5q0aPQ6cNKk0fvASZtGLwQnjRq9EZy0avRKcNKs0TvBSbtGLwUnDRu9FZy0bDRPaNKy0TyhSctGLwYnLRu9GZy0bPRqcNKy0bvBSctGLwcnLRu9HZy0bPR6cNKy0fvBScsGLwjdpGU78iFJHYg8Jt4Bkflm/8820cuACWfuBRPO7H9uwplpSTg7mSfj7AnGtKScTaFwD+BqKJFLfzMtKWd2AiVz6W+mJeXMT6CAfmacgjFcGp1pSjnLUzCOy6MzbQlnU7aHupdTMwH1LqfsD3Uup2YD6ltO2mAhE+lMW8LZlDGjCWdT1gz6lWbKnEG30kzZM+pVTu4ygUykM20JZ1P2jLqUU/aMepRT9vz/t3c2O3FdQRB+FSvrIN3zc8/PNt5kk7xChBFRLFDGwsRSFnn3GDAcLNFTXXQFxRZrzzSnR0elO66a+rwPlOg+ewNn6D57A2foPjufJjO6z87AWUb3uZC/pjiJ9U8VdJ8LaTqYc5z/SYvuszdzhgKm3tAZqPnyhs5A6Zg3dAY677yhswKWIp+VSyx0BmrHvKGzAsY0bkyJhc5Q1dfgxtRY6KwcH+MNnZXjS3lDZ6Dsaye/8bVY6KyAMZUb02OhM9Qa1rgxMxY5K+A0pBjPWOAMtYY1UoytIF0j1dg8DyvHKRY4Q71hjRRkM0hHKrJ5HlKSzfOQmmwG10hRNoN0pCpb5+mkLFvn6aQum8E1UpjNIB2pzOZ5SGk2z0NqsxlcI8XZDNKR6myeh5Rn8zykPlvBtUHqsxWkG6Q+m+ch9dk8D6nPZnCNfWAuscBZQech9dk8D6nPZnCN1GczSEfqs3WeSeqzdZ5J6rMZXCP12QzSkfpsnofUZ/M8pD6bwTVSn80gHanP5nlIfTbPQ+qz2QmykQIdbahaX7a3WOSsFFFF1QrllVjobH1GJZY6O0mi2Bk+EFceaM8ZXLyvxGJnGc1x2oE7nJO4uGGJhc46nFO4uGGJRc4mnLNzccMSDJzBC+31BOGN9pqC8Ep7XUF4p722ILzUXl8Q3mqvMQivtdcZhPfaaQ0meLGd3mCCN9trDsKb7XUH4c322oPwZnv9QXizvQYhvNlehxDebK9FCG+21yOEN9tpEmZ4s50uYYY3u5AFxvagTuYNzUHkw7WdNyS/LZonquTvk+4GPSe4+CY7k4tVkVxM7VkkzNS+vbAiqGfJCpzmC5Iwi4KEmRUkzF1BwqwKEmZXkDCbhIQ5JSTMoSFhJg0Jc9OQMIuGhJk1JMz9uCy8MAmzSkiYoG0pbwoynffbxw4Ok7kxOZRJBF1LuSrIdJn8+dYeiiM+jKmhNCJoWspDQabLZLK2h4KID2NaKIcICpJKVpDpnN8vHlaaoQjiw5ghIWCmJEFgpljl3ZLyWP5wzdkkFMxUJBjMFCu9W1vFWu/WnCwhYaZdgsJMsdq7tVWs927NqRIaZuoSHGaKFd+trWLNd2tO0xAxp4aIOUIpxLVVrPtuzRkSIqYVeSCJmFYCYydVOceq79acTULEtAIPJBHTyl80UpVzrPhuzckSIqYVdyCJmFb6opGqnGO1d2tOlRAxrbADScS0sheNVOUcK71bc5qGiDk1RMwRSiCurWKVd2tOrPIO5S5IImaJFd6hXqY+JGS6PiVkurFJyHQjSch0I0vIdKNIyHSjSsB0Y5dw6ZyxQ0iTc8YOId7OGTuELDln7BDC7ZyxQ0iSm0mDtpvk48WdXhz3tX65tYy+mFo/n17+ziGg9v/O17IQUE8WcnyLHpeIALVJ+jiShACVJQSoIiFAVQkBapcQoJqEANU1BKihIUBNEQFqExGgkogAlUUEqCIiQFURAWoXEaCahgCFCCx5kxBYvMYXMJK9xlcDSxUJgSVXCYHFa301MIbtLQxZX4jAkoeEwJJJjlmNmV/t+FIlSQgsJUsILIUMjraY/dXAUrsEncISn0bM/mpgDCnGU0N8SkmDfEqx+o0lo7H+jTUnaahPqWiwTylWwbH2inVwrDlFQ35Kuwb9lGI1HGuvWA/HmrNr6E+pa/BPKVbFsfaKdXGsOV1EgJoiAtSI2WANzSHlOU0NAcqy5VgClGXLNVKfc6yQY81JGgKUacxVDcmlsU/MsUKONadoCFCmNTc0JJdG6nOOFXKsObuGAGWac1lDcumkPudYIcea00UEqCkiQI2QIbb2ihVyrDlTQ4AKemKQwDJIfS6xQo7UNLYYJLCMKgGnjF3CcRlNgk0ZXUJxGUMCTRlTwnBxemKogN9piSEggNMRQ+X7zh4OBANw1nBAWoqzhgPiW5w1HJCV4qzhgPCWOTSkFGcNB0a3bNtziCvcDwXvPFUKc9Be0FTN362p+h1RDjYJ5SBJKAdZQjkoEspBlVAO9lfKwSvl4JVy8L+mHKDoQy6SlvFcJS3jXmMV/ATaa6x2sFSXtIznIWkZ9xqr/fgYr7Hajy9VkqRlvGRJy7jXWO1gTOXG7DFjFbSMlyZpGS8k1LDFjNUOlpqSenCWajBitmoHY0gxnhqqgWnOVk1beSXV2JzDynHSkA1Mc3Zo2sorqcjWnJ2UZGsvlm5gmrNZ01a+k6psziFl2dxr17SDs4gD0ywmldmcQ0qzudfUtIPTlIMRM1U7mkPKs7lX0bSDs5QD0ywm9dmcQ+qzuVfXtIOzlAPTLGafmHPMVO1gL5ZyYJqzWdNW3kl9NueQ+mzutWvawVnKgWkWk/psziH12dxratrBacrBiJmqHc0h9dncq2jKwVnKgWkWk/psziH1OfhzQ9gwzlIOzDlT0y/u/bkhOM5MknZxp7WKyjid1ipqq3Vaq6ir1umsoqZap7GKemqdvipqqXXaqqij1umqwoZar6mKa/KTqFXcyTbAreJOtgFuFd+qqFXcyTbAreIbK845BjfA9eTbeE49+bPNeXeVb3/qb5y8OxwuHv2ht4c/r68Ol7+eX7/56f41H3942hW//vvDzZKf3l9d/3V6s+H91revOHn7lUn+I/HOsz/Ozy4evTt//e4vL746nF2cX598fH95ePTa8uRrb05/+xF+/oxOrg7vDteP3lJvPpjTz//26fy3+/Me+UT/+ReFpY5B |
超市模块用于生产多种机器和建筑材料。
早期超市 (红瓶科技)。
尺寸:
输入:
1 |
0eNqlXU1vI8cR/SsCTwlAGtPV37oGORiIT8nNXgSUNN4lQJEESSV2jP3vGYoyRVJdnPdKB1tY7c7r6uqu/qh6Vf3H5GH50m+2i9V+cv/H5KnfPW4Xm/1ivZrcT/4+3y5/v/s6f+7vnufL5d1ftv3T3e5x0a8e+7/+8Mvql9U/F//r7++83P02/O/wix9Xm5f9/d0vq7vZ3c//Wm++3P1tvdn027vNcr7vj7/+R//r/svdj9v16vjbyXSyW803s/169nW7eDrI8dvk3qXp5PfDj+/Tyfxht16+7PvZ4d9tFquvk/v99qWfThaP69Vucv/zH5Pd4utqvjx8u/990w/CL/b984C8GqQf/jTf7frnh+Xw6ex5/vhtsepnbjIgL1ZP/aGx79NRiP12vtpt1tv97KFf7s8+FuDjxWrXb/f99uwzD3y2WQy/fP8kfP8ynfSr/WK/6I/dfv3D7/9evTw/DOD3TpN2Otmsd4vjuB7V636IRwX/EIcGnhbb/vH416/ducIVHLdjcD2P213jhgZuwHE9I2/EcYXBTThuZHAzjhsY3HLC3W2Wi/1hYn9ETG+IMo5XcTkzI6frcOBCAROWVilg3NSEMjWH25pQa4PDjU0oo3C4tQllxQ43N6HMwuH2JpQdu4IDJwoYtzyhLE9wyxPK8gS3PKEsT4hN7s+VDcL1NO4wm7+3kAhLoySMH88pKqImWwIw/AgGbj6e6h9uPYHCrUCf4+0+e9xOIiObfzeT3eHwPuuXwz/fLh5nm/Wy1zvuX8FX/eLrt4f1y/Zwygxumt2XVhsC9D+N9B+3jkT1H7eVTOEitlJG+ozvP4WSLQOy1RHZcFuplGyIrbjzhbV1rO9uX+j0U3h4lXGQcPF6y3p8vZTOHucPy8P96mNDpPWcbicN8xksMfipG3ZaJ6VlRgExIycjqvGkxJcr6LXBl64paWD1H436R6zMhRGVIFuSiyMgmb+aCHRFLTywh4ArO0jVNkixQ/Rbb+s3OlJaMZp0FM5AxOkGEvO0hpaBRI+cpEZMObJWJkYri9C5b8RAYmKlLUZpMzmA+cYAytR1sTmCBdFJGdFJpY/8oY2UOhopKkisofkzvLNhWmzXq9nXfr6d/fdb3y9bI5WEbCrZm/JkU9XeVOAX7Igs2CnywAECTvTkycrkyTRSUpAKcdfUpKnEXVPByB1xd9MwjHes3Dwk3jghZuaipQnriYuLhhGIC4aGEZmLgDKLcuIDHRlymGfmLK5JV/gwASZd5eMaGVkpSme8PaTG7cFr07g45kCuKLcIczXQQDwfGIFGqAQ+koONELFJJAo48bvPB+DUAn43pZfVU7/9ul0PP8eg0weZp6fQ6CG23NqZCxSO+nNtK4DolbnZKHOsdnyICFJsRczoFBzSpDPEmTDpPDAYp8sVMBg1GC9uSTv3T11onv1rZG5vmmITHw7DFItsTeJHpCt8TA2TriLDHvBhd13H3E6V/rrO8SE5qMOuQzaiUzROlc/zkT1QvsCH9kDkaLyJJ8WVMnWx6U5xXeKjiGAfMh9GBJGhG04dmxeV8UNoKI53HxQNytFQVYMSOs5XINUzHAcNODSB+chrxYCRLSdwkIm42YKQmQ6gggNW6OgnCFy5JSpd6ONj+HPqcjd1w0FTpHl0cILsVpnSOsF0SJRyCKZD5oAZHwOohEDHSkFZIx3oBIENvomKIWeeLgkiF2O8s2j2UrpXk1HNxeDJwLpCECqccMiOl7lg1DzhZQaRPe+PALUReBcKiBwZx4G6LwCOA0cwMVwYOSB5Q6QYWwO9IVSMnWt85b1K2CCGjkfGZA4G6i22cmNEjEqNXfC8nwWUNjBuIFDaaPS1NM5Nx2vd1NX2DhAMfhJQMZlx44CKMfhNQGkr49bBpI0d7/TApI2OccqA0grvAgGl9YyLBpQ2GJ0fDRN580VOpUtNG4mRd1KAmkmMk0K7yEeCsNuNYRUeC+wrz8Y4nG+bUhr4GIdDfhvL0U4FB2U/OZqAEc5l5WgRLvFOF+ewbrBEqPyZbkSWNndKv5HL1o4Lwno1LAmPi+3jy6J99kwQPbEbnZGZiafrMIXtvv9k96EYmx+TO7OR6ytTulyPjxQM9cySHRN71mUWywWnYfunG876Za9dcbKHcvUYu8wGJtRH6ZtrdTaEucFF8YwzQsSjGyqBtJ6tJNzrtWuMFulysTJo+aaqlZlKN1U6K630uikl9bvRpONPIOrmXsQApi0YhU8hc17DCjyWaFiR3/ohcrwrjLHKeZ9pH1DJBJvQeUx80p8aL+E/bEqSm/kYDiKqBE722hFkQxTTEdERFFMMuxAI7ZmtIulTG5h+1bKZYkZUSW+OS7em4XBPffXoB5lKaeYDugodaQs5GNmQau+x5OdiSLYHpYbcOo4Cla4zpNp7LF3bGZLtQWgxpNuDCqEcPCgo5FjNJGhkHC7a7i1nhBjM+1RumXQMR3OuTbqudAb3jnZWkM7g39HVYHDpKBk2csaRucFcO2JEDcPgyglYtQOeK4Mie5p7gSIHmi6CIkeauYAiJ5psgSJnXuaIIReaG+GgxCEhyoIUTmaiLkglkR2RnALqgakJ4khxDbWvUOhAeRa1hVHY46O7VG7TtaYcHYVhzQipjmyoBgZCFyZdCJ10nGdUG74zIgzjZfzY8fFLjJxXG9GdjKfF/mMLvy6Wh2+a3uPpm6Pt35vtYr0d2h3+2XaYWooolmshtpJ7yJWaFT02x/qMRcPcNIPFKSk+GqqhgaqhnKsFmGy3+mG5EapmAiUPnWASooxquFZqR0uCSCMdN2gEk0YcCW2ttvA2JS73jvoaIh/uKXHqXW7uH4FNBH+/xaZLf/FxKZqdVexstGapeafNQKjYiYyu91C5E9HX+dQEzYa7OzhFiqFYHghdqRu8ZnqR2UHfvQymHTQ6Q4U/TBsMv4bcESPjKJVPLvsxUC4UbIKf10A5sAQev/W7m6UEj4p5mL8m6TQRE4Torw71txCZTFp/tQkAei28MwVKLZaIJAWe5M3AhLPwb5JWsdDgtMH6ncQSvUqmQx1BvwlqS03TIAqeRBI5EilKLmvjl5jgl4qSeccP2MvCO35A5MqE07Ses9SZdGkEl0e08nq1n3rfTOSU7HiHEqaLLLxDCURmspl0LQeDnwcUMBq8UyB0olhlaucz5YlSYYrBgwN2tBr8Thh06Sg/jtb54qwMt6xcpSQeCAWHq9Rgr7VprwR9xZHbSvEUiU5Vi6HSCiphNEBnrBJxMvDbQKlN9VacpeCKlGLoBqghy1sAGLSlIouDkv6lOoNrDTtMWiq1oFJ7iqQAggaDvAlTBZueFG8shW+R76kfxs4rEfBKF7e8mpInr9LXl9Vs/7Ld9m2Dwoq7sJOSZKHJ1QHpUl1/OuDaGb1yTniBrr35/drbLBjdGa56UAqP7/hSFq5gyMJfKUGZDVkWoMzBmixSLcR/30VrVoexvWRO7DA2mM2pFMYGi+G8UrX3CKoBTMmJ9q4znUmqxRPimQo1aUwNBO/mHaxgLzN4k1KKwa3sCSrO+7kEWzdcNIX8quG86R0VXqyAym7NI7LQ9Ht7VTllHBwj9fAMQDN25Z2FhoptG84SisTGH6p4I/rWnJqgjoqFgZKKNTYo3VVscL7b34wMevHWE+N1W8v18OG3+TDdn0aa5OIi2CLFkn/kphHcPmZ7SaYAR8UCHF5s8ZNyDq+vTcKHT6TD5m2FmakCZe55ihMkurSAWrwjfPzitNeBhPDxo0rwhPccxQw2X/ob/KW1HHxzvk7DcK4LzjcthnqGSNculYKMqoJKSNZlK4z3FJWtGn2pzXE6xjumQZrVG3zoqEdsNEUEhyfwvonJsumW/a9tIw7CXwak0zriDU/pYCtlMCRRgVMmGDKSdRXQ/qQr4zudDk5TodlMthzNxZTq7M94PM0jy40GoZxwj7F5qtqL9jNuHQWKSXpG4iEOGm8Sj+6oZzweyMP2JrROLPGRzysWKPXQRz7LWDyGHPlHIsGX/RL/vCaInHlk7X2+yJdMRaWs/DOZGDLB2skkMl8jFUXmeQUosueffwSRA08IQKEjT2NAoZMB2kMLMvNukSOhDZwEVCEGTgIInTuD1JhCCIqPExLawEZAFWIokCpKjqvPBk4CqoJoUAEIbXgBBjwGZMvrmaDUBgoCCl3ZE23lzjCl473yoMaLgYiASi2MwxcFJd+tlasd4PIVtaOTfRpq+0Z+xhnCBlaE1H7k80IEqqLgCeaQeBKaellGXf0IUpAEUkLoChi4waqGKqmgvNUZiSoiLe95PHL1ZPg52EsITc6ePyMK3XAXvy+zehLmZZiD8hhVw3s2qFIDU+wDnQSGEquovIlLLXmT+MZ9HWMJ6TtGc7ejWULlxgr8xhDS52jlq4BoV+FAMIR8N7J6BQMpSKB87kCQgk7IEUP2lnCOKXk4dPwTOAIl0YfO4NEBkRPv0QCRM++FAZGL7VFZaRRdeI1O5GbMNRA8n8T1wBm8PSCy45EDhsxkbFUde9yNGxx54q2XOvo4wJLUQXb86zmiZMMGovZOIZWf2PtWNypsNkMGDZKOc7hRKasZUpNSKMadADP5xp4AsXWcH1MDU2XHc1NLDA/9otAWZw+2zokhAQWVmiwg58LN5aceGArHO3eR4b8mwS0wFXjIzUYMb+Og0IbHccBRYB6pIncyb3EAgdBigMZ0zbxTVUnoYOGO2vZ26ukqcZ9bfT27bcroHuezsWxLc3U4+CwO/orDASUMK0Vtlv4KENNHZGwXYaruCDfxmRo85AZ1xu4BB9Fzd8RgqL6Kyu4NDjQQOlAOP21OYKV14ihMMji1wI5mplSNLmHha7ygEpKcOUm31oQjC/j1xBC7ZlHzEKGCrO8bjO7HvH73hfFkBqYiTx1bWKPhOYCP45Oa0N4Arc0jC28Hyt0MBG/nhJwxZJZU5y/xT5y6zeFHs4XMcJkTNmyFwcwYZjWm1rU0MduvZ8fzS1MnqbOm1V03dlxVlvPnTbshZ02nu27oat41G7MQXpUSBSFZuAVJAwuG2wg2bfinr4qi4Q+H3mZzEOs8ceaUsvUVnOs+3Mq1CcmQqgUukMmQqgWukLmzvttzrZzT3v+8WB0wnraLZfM9tZCd9QGf6za386d5ezSyZVfVrDVb9lHNWrNhHy3YWBr20YohJ+IhHKlaz6EDLSmZNSbSyEV7y6o5+Kuap8/M1NZStVCYR3RALRSmwDmKSdZpLbc0eyMQgRX96UbVGph626gOIuXFVmWDtrWoWntzWyvZ6q7VBkhxwlgq+kjRVAFVMM/cMEHvUrkyNkwsNcfVWxp9dXzrV9nKUeZARXiMV9Jdwr7ySpqTrFIviaujXiPlx1MHiH3ixt8YoIP/UR2cTPmYwMEplMdJVQJVwRiTLXad1ZPTmvpHj67GtYydo7hKiiJiZzniqWCWI17RwPgjnu8Qj1vssJrE/hJV543FzvKaYkPY8QhI7JjUwwA0pQdAYsenQqEjUIlepE8p7Iwtc2uwc2Owm0bumBzE8rkBMLFmjGrCNr3TEXJcT1RY0H1SUdHCyjBqCqOdOnz5cFQ68SeN2hmKWYFW7aql8JJtFIh3rlziunHOurk1wKUxwKkJKJYIuXF8xVtC5MZBMJSiRAeBivT7T+oMZJILbNJUSRwJnxuFgkkf0aVbquVdDqPuuZI5n1s0PLN3yycN0WPlBKS1jDRNwhtO16+g379MJ4t9/zx8+LB86TfbxerwzXI+fDz87qf108uyv7u/v/tpuLQMf/Gffrs79rO4kKvkIjV3pX7//n+kuv1m |
前中期扩展 (绿瓶科技) 用于超市。
放置于超市模块的底部。
尺寸: 32 x 32
输入:
1 |
0eNqlXU1vIzcS/SuCTruAFDS/Sd+CRbAIsHPZHJNBIMttuzeyJLTaO5kN5r9vS/ZILZlUv1c6zHjGth6L9UEWi1XFv6b3q9d62zbrbnr31/Sh3i3bZts1m/X0bvrTol19nbw0D5OnxUs9+dtTW9fryW7Z1Otl/fdJ/ee2Xu/6X508btrJp83D66qe3N1NPi1Wqx9+W/+2/rHrFsvnSbeZdM/15H7TdZuXya55qCebx9zv/9L8r76bGD35s/9r/42f19vX7m7y23oyn/z6r/qx+zz5ue3He6oX7eTLc12vPvxou1p09fC7P63qZdf/pFlOlk27fG264U//sdlu6/bjp37pevDht//dPD0fvr9Z91Npm+UfZ9//cberX+5Xzfpp8tLPuel/SX384HQ23a0X23m3mT+1zcOe439O75SfTb/uv3ybTRf3u83qtavn+9/b9nDTu659rWfTZrlZ76Z3v/413TVP68Vq/9nu67buxdR09UuPvO5l1P9vcaRk/k7JXE975Gb9UO8H+zYbhXhc7Lp51y7Wu+2m7eb39aobIGgAoa0f5l+ath58zAAfe6kfmteXeX0QWbOcbzerIYT99nk2rddd0zX1Gy8O//n6+/r15b5u+8kdkS6on023m13zptZvPP/BHZg+7//RD/DQ07p8+/Fhehe4+oj72lPSPrWb/msBWZeRZ8dZ7/V6mhnIHAdqepWdL5/rXWYIcz7E/WI/9SoDZ09w613ddv33yvRWPVgGw8E8dRRPPcFTC/B089oVmBogpoYMU20GLRJ0+1t0IREDpVsGUhUxUrxJFEoRQyl121gakruqQMErzDgVbJ3KMsy4aV1RDlgJTpQXlgLl8fWVWwxUYFhx23KgIj4Lz82CMVkVbhGoZmxWpZsYphWm+DGj+D6HpxFljCPKqA0sRl1xuz1jl1rdJMaTXa42vcf2vOgHfJhf2a2rMbZ4SFhao6uUZkxTm9s0LWLEO3DJ1oxBanuT58YYpL7J9g2ziWp/k0QMtonqnO3nbMsYhvbb1i1j4RXCnK0QOSxHHy2gtcbgW+p3i60g3ECdJMYWARMFJyCRbifBsUCkHbaiDzaQRC1+CA0UroZxPYVrBOcMiWgtbo6RmoDj/PyRPcN6yRFFpoJBcgAQ8Z7weU1pnCy3Eg9cIcCuOg9HAQxyNzDIKckBRCR1B55LPbg2O9wRVkX7zfnpDjdYFRmlcY4HxpTG82cCjBXYdqoVKjPcHrVhFkOXWLPR+hZl9vguqi2jI14hsUtqB/WgL4sanjfXgu7qij+rD8g9sc2BvU+Lrs4y19JOp867r553X00BybMn1hHKAiBnc8a3Mc2JpFi+o9tzqey6evEyr9dP/cey0knX7y2KbqQ5jLOum6fn+81ru7/JCGGmXPycC15XAH/sdR4H3iU1iEEF3iXFcA0w51hCzK3fwZI6cfQWL5RitbjPXjFA8dWKUePgEcgRuw+B1NGjl5lR0l7hVb8kqVBlFVXgYhqIEQIXE+JwREzr6FUWOBwVq1k+r1n5S9eP42lWouGMJ2cSTWovzf5PdumJiBkep4Ox3PK+qkaWjOh44MIOFz3vnUKKHAMPjHGVis4UVyHgmBQT4pUphvhUsV6UumJAH+afG1GRJqRN2YR6e0w+Zz0JueXQI95RosKlblyyZU8+Wd6TxwTseGDInpJn5RjKm9thKcwugykwJxGNuCOJOP55ZhlMkH16hsuqquizgy3cH1d8go4rQSHm5c5WirHb28qQRxs3oBGAt7QXDgI72g0vCsjTUEUBBTrc6zB9jIhbojnRC3xMC1GrICfTljB9FlNJLv/fsIEUHc27KZjklOGRQS4jmW5HTjiMy451TPwZ/iCQsOk/8GWxWuX57fn9EeRK4JFBSRIbWKIWMwXtYJGyl0GyzNXAXxpZHTUSkzQVJSOt+UtqjJNEgsz3zdaXJs4HIkMJygmjc+HcqDaPj7vnTVvPt68v23z6nyc8hICx9GRQu+2q6bKQ4TorI73DFlmJb1ppIODxaZqK3rpBYML/UxwysWlVHLLhXQMQmbAqzSE7PlETRCaCI5ZDRmxrv+/krDWfr0tEJEOJ1jxy4lNIMS4QWSmKs71BXgp2ujm6SwHaZK1mXDCPYRppbChkYkNHtcoOBdVKGI4ljsEExQjmd9ozSou5uIrKQdFFk7ZADvogCaVs4UcnOn4IYT02q/1H7qb1saRr/l7S1eO8nWh+37bNpu2H3Rch7Suv8pQk3n0tbeiuYhxWTMhO8fSVvASnad8tlqB4jzKVoCxx7ZugRdk54qa0SJenswIjJtJAAxdpjGTc05/x8fJOT/funqnC5+xQifZWS8pDZIqEEmezKxiUKRIpVfKadoBBWg3tsoPAlr0WVGWlCGGvFFmF8NRFN8htz/vuIFcCf94AkakgJMiHxJ8HMGoHSSSgdvir2hH1YdXQMXthooh8k6PjnbAyMc0jR4j5g5wTNN+0aKFIQV6wkhhuGsZwr4ALEiyxbSwILscx7R+kqpC+vqrOnf23lK1egk2BO1F6/xsL978z3XuURWtIzCkAs4NIZ0drN66t12omCY/UcVPRfJAaRDaSo00sH22u8Ye4PQ+UxRGZLdpz/PE8zSBy4M8vJb8xElcN3FoWE4+MzT9V/PxBZMVfF2A+QhJcRGAre+KPjapUgT7IUrkSQ3jDUCUM3KLM+RYzKh2+mg9FxgoQ7DlquZcBkYHiRmWSeKyCbHTFZoOFIeLACdjuv2RHUNJUYHwIzQ5h6CGMNO30coiDOu26ZvlHfiCRn/quf+MF35VjosYKKtbRlcBJVVBViq4EOZyqwqCjpND+nW6A04kt3HAc1weZLuAAtsig/ACs5eri4lC4M9YKStok1VExfuhxb81oDdBPYpgIc63u+2JNu9L+QQkq3wvZrJpIdamGWOMtOxR0e/gd0yKIjDkeqTWSJiAq8Q4JxhZd8Q4JiKx45ELCvdZMfzUDsPrKMkhkxbgxdSbSYizJXb7rmoKyebX2PM0Go5mtNQrn+GdhlSuXElojsVdPsgUJ0iQO09BRV3OFI/trn/fyq9me1ya6LHeMYiLT6FQ0mzzgxozeUNVFKJ0yb9VAYVVtBEVGoMEbicsKQiNboy7tjX5w777bN0WdH5qiZi/cV/VjgXFEDEeRs0uCkn8M2lYihxxUJqJPjCZ3faJVjCa3fcvWSGhypbGCMiQUGkrHKe+nWefeCrK3lcboDeITm8Zoj+IDlf14oPrPohBCsGyhvL5YPM/3wRBnOpmZCTq7/2H5OInzbaj2MKZ8GkCOcE6LxtKSewstSOlRUImAdkik9kg9JARB3NZi4hXEbUHkwCND5SnaCSK4IM2CeC5UkqCJHCBLIiseGSrQ0F7Qdw3jM5EMFEhkvtQQ5TNfa4gie749HMiNQCddociRRwa5kXhuYMih4nOiUGjFJ3Kh0IL6DlCIwQgYAkJbQds9kCGOTxZDob2AapAhQUA1CB35yhTQlWE60JA7YqwE0BhDiJQdZUloQRoeyOtoBNDYTs40n/Ek1U4ADfLaC4JOhQpWzSTmlJfRrD8a6ay6iy3g4pR3aEv0dtIrRDqZ/B3NTWaQwHMlZmZO5GdBJBGekuSSIE0OtItBfg4oOXdFcu+pkDOTshnkWtJnBrTC5MQBE1AtPBVbAEGD6LzvROf9FMn7YTt2P5yS5J40iFrs851oFFQqagSNaZTHkLWEPV7EHiO5RpVJwkr6wQdRF/9BihAxlpeN5fkQE1TSZ6og7Bb6zrUPd4GHO8CQPmcHi0QpnCpUDppKEAfCmKEEcSAQGbn9DGMzV4KYD0ifIOYDIltJH3+R9SsneDBMaP1EylAiGcY3qEKRo+gJASGDkiB8gc1DV0yxX9GatCQsBFKoBfEEzCXQgr4fCuoLYLQkLIS5G1oSFgJ5LWj9oQIGHQTQIEMETUBQhiQBNMYQogPPKZ4AQisBNMZrpgkPuVgbQes4FFrQkxjltaAOE4WWPHUBMiQIsnVA6CigGmSIJBqEbQVEUx6tOZMRZQEVWpEYJu/HjO3a1lDZMlBDHyPK7gGFJGgzjArJi+NKmENggzgR56LR0fK5fmmWi0OW3rrwKl6kgljgDBIFiq0WriKDVWHsGTthHo+k3ZERNN5RUEGlkSTtRAyZfSfDnlN+0sPNdlu38+XiflXnueOkhX70SF5c8EcPJbneBGUeBdCg0BPTolgVCrWNZ0s3T09rXDRw2G1Wi3a+XazrbMdc4+kSzlgYKRuKyw5JvVlc5hG0qVajMFbaK+OSAffNEzJ7J39VLErWTiIZ6OTJFLkVBGCpBBYptyhBuyeR7aMtt24EyQNt2LoRxPWYl1q4aVbztn7sP9Z+zepD0OIU4pi/ojSpmtl8CrGB3p86jZCwB3mtyPVIEvMJTjSWqPWJYdKFvstfYQoWeOQKQ47Mq3OlN6GD9AW49/mfKeX+hshEN7NV/yf/EomJ1GNwJbKjIurnyiiauGkpoxii7q6MYqnn14owTlqw9652H0oYD4kQvZrY3t21Mb/aMAk+mjOgKPBHQQuKghdMdVVifBKAlaSYKmk6S84s30tNZrb3AG3+pSfDJPpYToJJS0MPGmqqYIjmPCfaMRVJltlGUXpFW1uG28jWljwXgNCDtjshCyjY0QzG7Mgjaww50SUsGqo/s0Q+jyGR+XIQFFnTSREosqGTDlBkvhwERWZ3zHSu1ece0PWN0lZ8hQg6Db5CBEWO/O08ZvGWebOqKkLnziqWyM85QWMMUUrwmitItSAZAIU2AmhoebXY01Vna0kWxjFBPJQ2bP87UWdGAvBWMcmuJ3IlbXUsl4bjgbHKroKF3q1SgeO/ZjoQnMBF3IIet1JxTA+pXj4q3cb0QY7OVf2MsH5qSz1wW+SCY+K8qDZ40TO/Mm3A+k1qhXNWcmAs8ldyYCx0orGG6vOhb1NZo8QHOmyDNYJCEdDjMJKzIqbbxopjyebytcV9k5rH13a9WNZ5ETjqXGowtlOlIRrqtmJNIM+fo1Zoouj4rAVRaDvIyLm6On8fxI0RTzXkOcJaCe0W2Q31OeVj0rRaeLmuLx4UbfsF40s/WJ5yw1AOlShZa4WX9ZeUP/T/eNhfoW9e7pv1otu0+Tk4JirssDl4SVK2UHswu1U51XdZQKxs63QYG7clpmzrhAs+ImyhLjyKVENHtbYDrdLRzZpLZrndfOlVe/el6ZbPeaYIaps1VPponRVAWwzaSR+PeR/gPMjz/YrL65lT2cJe6zzTGhCVc6DON4WiXsvk4URSvROfiAxCE413dEVCKwF0ibuevudX13Rtf8e/Dyjm7/kt0YBHK263ITrwaE1CO8HZB1tFBmk3b00f58CLNe+cf/vAnu1/9Qb2UO+19FREP+gc+S0viyBOMbq2R1/ZorhMHlQ4gkweUDiSTB5wib8hk8ef74GZj+ss9+UZPVlLP93QzpzJ7ypcVg+4q8iyerSTeJWyrB6hdQQvOWsF0byCZCgvmxbdpeR8vI8XVoXLKuzVryLfsotLrKQHyHhupU9tXa/LR8iopMe9i3EWbdM9v9Td/qHe6ye+qKUXieGKj5lPo7Jc0hFUq2CjFR0vRQYTnWgsmcVELzooeqgLso1BhB7AY2iknulEzTCJT4zxsqBgvesW627MOhKdWh/OpzSIjm7axVM970f9Iz8U7QpUhaHuN82qLsxH0KBaF6rebIL29bKMs+bMdCkynPokif/uMWgvTn0LheNTKB/TiWSmk0MK8igKoKFiPpvE7yBhQnAV/Q5SonTTVYpyZEGqRV2nr+1f5WXZVYa81/Aj4UzHPVP2HTbJqHfcvUYcJd4zvmLElCQwPk7CMCODGTG9SyJfRiY5VZFx+VHRKSXyX7B3nN3wOTIo7D9Or6EcIkzXsBSmMJx8FoYONF/o79nudQj85RO2nfJUekaR4CB9DANlLBeiAkGxa1ltM0qVu5xyuhJHj9IH77T/xJW7e6e5vQ9b17Tg6VsNVfY5zZdqmwoj2tLJ0yiyoxO+UWRPJ0+jyIFO+EaRI508jSInOuEbRCbaByUSWdE52CiyoMO7KRQUOQMmBl5I7MrGabCHNXWVQcyuDMZJA+AmU2x2uOL6PJs2Xf2yP3uvXutt26z3FK4WPRf7733aPLyu6snd3eTTYrXaf/3pz65e7/oR9v/55z4mOPll2dTr5X70/9bt7k1aUdmQdPC9kXkVvn37P6U4z8c= |
生产模块用于生产可以在总线上运输的中间产物。
用于中期游戏(蓝瓶科技)的一级插件工厂。
产能: 54/min
尺寸: 32 x 16
输入:
1 |
0eNqlXE1P41YU/SuW1wn1+34vuy5aqYtKlaa7AVVOYsBSYke2MxqK+O99IVOgxIhzbhczCHBOrs+7n8eXPJbr3bE5DG03lavHctuMm6E9TG3flavyy6FptsXv/fa4awpV3NabqR8eitt+KPbttrir983VdXfd/THkSzanF60KZ3/at13+8Zf272ZVGF18z/+drvqtOxyn1XVXLIuvf/aHm+KXXbOZhr5rN8WmHTbHdip0qE4vf3PRz9tvdbfJZry7pFyUY1cfllO/vBva7cn47+VK+UX5cPrytCjr9djvjlOzPF13aLu7cjUNx2ZRtpu+G8vV18dybO+6end67fRwaPIdt1Ozz8hdvrP83Xi6/+X++f7LjNh22+b0Jk83i7LppnZqmzPO8zcPf3XH/boZ8gUvCNNQd+OhH6blutlNGfnQj+2Z3Wd7w5U7G3zlMv62HZrN+bf2aXEBq2nYCoE1MGxkrLU0LGSte4Gtx7HZr3f5YJf7enPfds1SX4LbH+D2GTxDt4eZo714G09zrRHrAw1rENhIcw1Zm2hYyFpVkWeolOwQFR6I/32Hz25A07gOwn0Nxdt6nJZtNzbDlH9zAas/MlfPwVra6zAaHI2L0eBRGjxFw2vw7frscPd1TudbAN1B6HwMYiTzQQiRrCuU5PSRuX4OVpEkp4+MnkXXqNHKUFbjNVBZ5vS05YGx43N0CvIQrqdxA4QbhHU7cClfRzaFBiS6daJTHUS3qYQ5ySNWG8UmUogM8xqFx2zucDf0+esndFx6yeKl6T4NBnOHafjWFGPdCpOUR5KJcWxmDRCsJ1iP/4f1IG3PyFg1kc7mGFOJT7qQ39iKB4ayo+Ub1Qjh8o1qgnCNMJurinMR+xqp43E9TvUz5qW7n03PyF3T3t2v++NwGsyVVjdzoE7q4LT5nncY7GADD4ydbKQ9RkFzu008MKQzuIqt+JcGz1U5J1BxMIO1sOZfws/abdiiD/JhBVV/xjdeClB/nD6oQM7xkhRGvRcW/kv4ucLjAlv5L/mZxY2C0i+kPtE1GbsHL6idWGbxSoAMuYvny6eChDVveGBIWvNWWpgNqY86OusaJMt4XngFKeelV5DySOdbjIkkLRMagQ8Vn2MxiVvxwBDRQdPZ1SCZKRhpUdAQvBV3m2RMBsfnbowhQRsLOougjwW9RdDIQpJeEDSykKQXK2nu9pyfREFnC1ET+SeUIDWCZ5SYxfxTStBi+YzJnqYkODFyJMGJsSMITkihiYLghBSaxE+ZkESbBLEIMZEEsYgxYaR9CSQuJ0u3UxjRgpkSI9rzwBjRQdqXQCppinQ7BcnfSTBBQsCqkoyQHttIkMyQAYMWDJERQxZMkQlDFo+RidzQqPg5MkGP4yvBIAnSHugMBZocpZk1YvhJouAlwSMkpQTTJca+UnTaSlB2UVqabiOGbyQinox9+cjJxq8SzJzgeUj6WtCHJI0tljkV39nqCkPmW1utsG026eCpNektb7aDPn+cp9X753nW3syiaqm78zcgWBQCz1eyKoQeML8spDWGzK8LaWxHVAe2MdCQ7ql05Fd7QZOliq2GBGFlKrbxACl5syeENwYzHgI8X1JG87vKGP1GquNqSARVxrKdh9YYsBN0BlL6PV2v0bsQFFUwy5gogAadRlBVsb1dZlnoX2RsPfrNthBZrx1Z7qymkzC2LG0Nn4RB2vlld5R2R6dfkAwvrRvg+n/gUy5ItuAPT0CyE51soQ1y5SpplbAYvhI3o2x0On4bHiVJ0uaCfzMiaXMxn3GCNheTB52gzcXUQSfdi9eR9RZB3wuywy/Hg+x4vuOFHjIozy8pgGR4QX8LkmHolAg9CFBeLBfRTuidIPpB4gV6Ecp84MMfU6K8QC7ChCif6NYNU5GJxaHAkRGUtA8CLReEJmi5ePTEtONg+UoPIksCEiRFEpCYcwc+IE2F+QgekJpExquk4ZAjHpGWRMbLpCOR+fUEg4mdxK6QJ23mR0uDab8Rj8L0IfJsfEd+OwFFJmJQkdBEVaxIaELvMRx0IgQfTUIL1hPmoG8W5084Wb351JdFuaszVP7Zjw96Wa2Kdx/88uv5g1/ypd+aYTwHSFQ2JB28y/9UeHr6B3/s69s= |
1 |
0eNqlXMtu40YQ/BWCZ8nhvDm65bABcggQILmtjYCiKHsAiRRIyljH8L+HsnZtYUVnq3oPhmGbKs7UTHfXFNt8zte7Y3PoUzvmq+d80wx1nw5j6tp8lX/ablOdmrZ+yv7oNsddk6lsW9Vj1z9l267P9mmT3Vf75ua2vW3/7KdL6tMnV5mzv+xTO/36r/Rvs8qMzr5kyp+u+r09HMfVbZsts89/d4e77NOuqce+a1Od1amvj2nMdChOH7+46NfNY9XWzeb7S/JFPrTVYTl2y/s+bU4z+JKvlF/kT6dvL4u8Wg/d7jg2y9N1h9Te56uxPzaLPNVdO+Srz8/5kO7banf67Ph0aKZpp7HZT8jtNLPpp2a7nUaYHtP4tNy/spBPuKndNKdbvdwt8qYd05iaM9rrD0//tMf9uumnC95wxr5qh0PXj8t1sxsn/EM3pDPRr6MON+512MWNm/A3qW/q81/ty+IKVtOwCoE1MGzJjNbSsNBo3RtsNQzNfr2blne5r+qH1DZLfQ1uv4LbV/AJOh0+XOCrm3macYPMIdCwGoEtacah0UYaFhqtKsiVVOpnllLhQfntPg6ahqZxLYT7HpbbahiXqR2afpz+cgWrP4LVc7DvYbnrJr4fqimnbf4H3X9Exiy6QwftqUHzcYitHR+I2NqVJMnxo1H7OfSIkhw/GvQcrC7oOIdI1orGhUjWGqVBGYoHvB4qSxFheWCMCUenoADhehrXQ7iBTW0ByRK6FEqDIKkn+j0Kj1N09/d9N33/Qfa4pn3xpj9PGnnuRqZgcyrEllHCQuAhdF6rQlvHGIL18mdYt2ySDUhyMU5YGTyE7ulUi7EepFJNFFqmpDM7Rn7kEzCUKG3BA0PEW160RgiXF60lhGuEKVgVko1i34N0OK6HsXpFvt7rZ2Im/LZJ9w/r7tifju1Kq7s5UCfd7MJJeH7zYIsceGBslUt69yjobG8jDwx5Ea5gFcc17lyZc0ogAmaG/FaPuuP4QUFympUB4BSMUAdcL+ksvOVNK8wHcgIlIKTes1rg+j5z9cgFoRi4ZmgWnveDQOojXZ8xQrygjmJD9kqADKUWz5dSBdlu3vDAkPHmLZ0MDRLqXmrNfoVnvVkvTVwamk2g8y3GUsknRGy/RB4Y2i+hkKYpjQR9UHR2NRCu5tMf5t7zD0xAoq1YeYoiKDg+j2PUCyQtyL1A04LkC0QtZPsFgaiFbL+ykOZbL9ktJf9UEyOoFDzXxAgSBCo2YsGzTWzE8rOnbE0lgYpRJAlUjCNBoEIuTikIVMjFifzpEzJZo6IlCoarpcoKcp6j4eMdWsAoOGtiC+hoiQL5tdFLlRXkd8bApymMaMHJEiNacLKEmFaF5GgZsD4GydnSY9CCw2XEkAWnyxJD5o+XEWoCKMTnyyhqGCm8xNyLgodNqgjSjFti1JV0pQDXRHDoxLbRRXsQ4e+J2FdKmoZLKPcoTZePiAELBC7IvvwoKgs2JTiLgiRJNC6WRJVE5IILwKtcrTBkXubqAuuEkx5ItRbtmYvOoh8//tPq++d/1t7Nomrp1pdOQ9BwBK61pOUIXWy+6UgbDJlvO9JYxynfeKQhr1hdtB7hUmFm0MDDKKUjW8vBSZhCKEK0wfB5AwncMRfdRrhWENJvDFvMNWSDK2OFKkQbDN/xfdwg/Z6u3SgnggKLDroUQGNpxggqLNavzDQafUPGOpatolMj1hFutVQUOFE1tdJ+Bg32z1s6/YJEOT49gruGb59Hd420g0FDrdjKlnSyxVroreCfWjCyHd9GD5J90WzEClNZKDm+wx6k30kkL8i/RPKCCyCQvJiF6ASSF3MQXZCm31K2Z2inSQfsP4t4pwkkn+g6Chz5nm5t0JCxrzzf24CSwVtKKBliS0m4Fb0TZAKQJYGnhNIU+FSAuVVeYClhZpWPtHjEfOsgPpKC+IIjKUZJ0FJlhHnKgiYkdOSWr/rgmCUBie1tSccRygcfkKbAdh8ekIZExoul5pBLvFg6EhmPRUsi8w1GBjNBiQ4jT46Z72UwmCdc8j6Qgbq3FdFNFElkIgYLEpqoioqEJnwgzUFHwggyJLSgnWEO+m5xfqfK6uJlM4t8V01Q0+++vlpmtcrm3jfz2/l9M9P1j00/nKOkVDZEHbybvlR4efkPTCQgtw== |
1 |
0eNqlXMtu40YQ/BWCZ8nhvGd0yyEBcggQILntGgEl0fYAEimQlLGO4X8PZe3a3hUNV/UeDL+oYk9NP2qaLT2W692xOfS5HcvVY7lthk2fD2Pu2nJV/tV32+NmzPd5fCj+nH7eNYUqburN2PUPxU3XF/u8LW7rfXP1uf3cfru8a1eFs7/sczv9+e/8X7MqjC6+FMqfrvqjPRzH1ee2WBaf/ukO18Vvu2Yz9l2bN8Um95tjHgsdqtPL31z06/a+bjfN9sdLykU5tPVhOXbL2z5vT2v4Uq6UX5QPp29Pi7JeD93uODbL03WH3N6Wq7E/Nosyb7p2KFefHssh37b17vTa8eHQTAvPY7OfkNtpZdNvhzc0LPfPNJQTcG63zeleT9eLsmnHPObmDPf8y8O/7XG/bvrpghegsa/b4dD143Ld7MbpBoduyGeun80OV+5s95Wb8Le5bzbn/9qnxQWspmErBNbAsJGx1tKwkLXuBbYehma/3k37u9zXm7vcNkt9CW6/gttn8Ak6H97f4Yu7eZpyjSwi0LAGgY005ZC1iYaFrFUVuZVK/dReKjwsv7/RR+vQNK6DcF8D86YexmVuh6Yfp/9cwOr3zNVzsJZ2PowGR+NiNHiUBk/R8BqDu27yu7t6Su5bAN1B6HwoYiTzsQiRrCuU5PSeuX4OVpEkp/eMnkXXqNHKUFbjFVFZZve05YGx7XN0CvIQrqdxA4QbhFU8iDK/jmwmDUiQ60RnPIh1UwlTk0esNorNpxAZ5jUYj5O5/W3fTd8/oOPSWRYvgvx0aJjbTMPrVYx1K8xVHskpxrEJNkCwnmA9/gzrQSrWZCFrIp3bMcISn4Ih97EVDwzlSsvL1gjh8rI1QbhGmNtVJfIU+xq3w3E9jPUz9KXzn1cw3aBt8u3dujv2p7O70up6DtRJ3V26Cs+7D7bNgQfG9jnS/qOgE75NPDDUkXAVKwMuDZ4rfU7Q78EM1kIhcAk/a7dhlQDIhxVIgRnfeKlK3XF8pyw5xzevMOq9UA1cws+VIRdYOXDJzyxuFOgBIfWJrtDYGrygkmKZxSsBMuQuni+mCuq9ecMDQ903b6Vl2sg6qY5OvgZJNp5v0YLM801akPlIp12MiSStFhqBDxWfarFmuOKBIaKDppOsQRJUMNLaoCF4K9aestAMjs/kGFECUQv6jEDVgk4jkLVQ8y8IZC3U/IuVNJN7kbtEgdyFGIr8A06QIcEjTsxi/iEnaLH8/CncVEmoYhxJQhUjSRCqUC8nCkIV6uUk/gQK9XSTICQhJpIgJDEmjFSsQN3oZGmNhREtOG9iRHseGCM6SMUK1E9NkdZYUL88CU6XELCqJMdLjw00SM6XAYMWHDAjhiw4YSYMWXzETLIBj4o/YyboaX4lOGSC7Ac6UYEmR2mCjRh+kjT5kuDRk1KCkyfGvlJ09kpQklFamnUjhm8kfT4Z+/LjqDCMleA8Cm6LROWCriSRuVgeVbzO1RWGzAtdrbCZOOmhVGuZ07wZNfr4MaBWPz4HtPZ6FlVLnV+8DsHwEbjbkvEjdLv5ASStMWR+BElj46c6sGpBQ41SpSM/NQyaLG3xaqiDrEzFqhGQkjdDR7hamPEQ4LmUMpofg8boN9LGr4bapcpYVo5ojQE7gVyQ0u/p6o2uQlBiwSxjogAadBpBjcVmgZmRo2/I2Mj1m5kjsno7WdWzms7F2By2NXwuBtnn5+hR9h2dhUEyvLR8gO8sCHzmBckWvLUFJDvRORcaTleukhYLi+ErsTQVBqnj5+1RriSiF3xXikT0Yq7jBKIXayQ6gejF+ohOOnmvo9BpBGIYJIkfvwdJ8rwMhp5KKM+POoBkeIHoBckwdIKEnhwoL24sSX3RO0EuAPkXdJbQDQh8MsB6Vl7QWMJaVj7Reg5rOxNTSIEjIyipOAItF0QoaLn4WIo1m4Pl6z6ILAlIkBRJQGLOHfiANBXmI3hAahIZL5aGQ454RFoSGa+WjkTmxxoM1gglRo08aTN/3jRYXzjiUZjeRZ6N78hPNaDIRAwqEpqoihUJTfSCDAediGaQJqEFYw1z0NeL88esrN58As2i3NUT1PS3r582s1oV8x9C8/v5Q2imV9w3/XCOk6hsSDp4N32p8PT0PziRLfU= |
用于后期游戏(紫瓶科技)的一级插件工厂。
产能: 622.5/min
尺寸: 32 x 32
输入:
1 |
0eNq1XU1v20gS/SsCT7OAlO2u/tZtDrPAHgIsMHObBANZ4niIlSmBpIJkg/z3oaxYMWJq/aqKucSILdVj19erIqubn6u7/ak+dk07VOvP1a7ut11zHJpDW62rX491vVs8HHanfb2wiz832+HQfVr8eegWdbtb3G8e6sVPx1N3HP/cb5u63db/ePOufdf+pxu/sz1LWS8i0Zvwz4dm/PWvzf/q9cLR4uP4z/lz/26Pp2H9rl0tfv/tcHy/+GVfb4fu0DbbxbbptqdmWJBx6en7Tx/7efdhM2Lt/u+HJmRZk16T9PSRaln17ea4Gg6r+67ZnXXzsVrbuKw+nX98WVabu/6wPw316vy5Y9PeV+uhO9XLqtke2r5a//656pv7drM/f3f4dKxHhTZD/TBKbkfFjf/rz+pdXdRbjRKbdlefQb4sX/3qXb0ZUZ59ib68X1Z1OzRDU1/AH//z6Y/29HBXd6PU63frj8eu7vvV0G3a/njohtVdvR9G2cdD31ws/7jY/CZcVvsmjDi7pqu3l7/68wV+J57Y4sst8XFCvGOLt4Yj3/PlW478wJdPHPmRL9/dkk8T8pNcvkHcJ/Ple457Fr78wNG/NXIASEHWyjVkoBXwI9imWwBTLmQFMRxZKvJyACgIbJCrCPJSKwjjzFJRkgNgcfAtkDd9Xz/c7UdiXD1stn81bb1yL8U/BYF/lD7Kbo4vqHH5SH79+RvPfz+KGxc5dRHle568zQ7uEfemfJqST0bMpQRxqZyrHSSf5Gx0XsCUSCcX6W6I9HLOcYiv0stw7o/7ZhjGP04kU4b9ojxXYwZM8kRESKYjAR8XFkCRJyIIwPFjlCwLgB+kZFgAxEylRD8glzp+YJNjLZMf5kQsAD5rU+BEo4tyACifOH64k2epKL9KmJQUhOm+RXs/bLb/XTVtX3eTefbJdwJy3V4Q5LfkTyneW/i6E+u6SUzwHrpuhxdAUWBP78XXj+ld0S5jClL0yx66n5DkK8BUpOiYsRUUeQkArSAYeQmAAeDRe2VmKHwDyRM+5J7B4VfuWVfu5VeO6TzgTCLJPCGymSRCikliJkmQXrJYfoTkF2HfnWasFaNh0yVknPiy1D61u7q77w7jz1cI56V5ltdb6uenD9UUoJyfIWtFRbcMuVv0cgBsBYHpb/aHOFyUcxS2zCQHwAyV5SSIASgabUhFyUjb1Dk9IVk5sWHLVHA+ZKjkxAxRIPleLD9D8oOQgayZ0w+e1Qenu5GFHgFfZuuL3kbYtm7u/7o7nLrzQ9MclmTN+ym5Ce+oiqCuSRmmzmsjkpEyPhU5E0B+lY0cAHKsbKVUM6tnZcItlDgWyk5Q3VxZJgvKm+wliFmDGKCwPD+4ebTb94E5hjW5NBWYOfKbvIwUnTlJeW1et8v8VhBbX5ETGhS3xcgBoMxTLN5rSnJyIXavaaHnyEVO9RabdpBzvYWeI5fA7vRA1URFqzdx7dfUdDgNN3JTSfLJKMwaGa8dLEkctfCLBwuOtSjYHdOONVYBgU09GAF3owpSsfeEigCPtUZF4FLQwGdaLOitiXySQ0UnOQuh3pUVEGCMFJzqRCnEWsMnO+jZohVMrl3D22GjcSRHIAzBSZtbN+dc07MJN5h2QSMFOQmCRopyBNBISUCDBGV5mxUcBepH0aiDCiIj7qRndWOyAjrGDCUZbStMLToFBOYLktE3ZjhSUECAihK05mC6InlzPq8nC7pzdImK/hw0kFN06KCbOQX5BwxBQf4eQxCTf5zT15x86AZVZWA0qkFSZTpFEQAaSzF4g6pJUwyAqyhipp7V5wQDdt+4DluqtwoIzGCCcTvLDB3vFBCgoryY8+b1CcU8LbpUxUQtarDE6KhFuc5nfkedoNJAMJpHNxEmtRPkg7U2Ygj80VpQO8+m815nsSyxbHByFgP1r+B6UP9B0CwnqAcLUcGPoH40LA8qKAuaVFBBitFaUEFRMVyLQmiIG7NB1BA3COEETSqWiKIXNIegaA0Hg4rRcDDoQRwOFmXqKODgjFlAwcEF26qr4OCMIVhpY1vmLCgT8UsBzEhJQdSgkRREDRpJQtTQ4JFNGqIG9aMhalBBWdwrz+vGRVAwYIbKmjYc02K2CqoFITT35jF3y5o2HITwgoIBS1c5iDv8WT05Sx7Hg0vUPI4H3UzzOB70ATn5E/bAv8jJn7CphSIlf6JZj+qQb7VBVcnYDPtVJLPKLPIiADWWYkMsqiZFMYCuIkmZemaf05xuAS5V0eJjBiOjaPFRCEVRgCmKjPiUi1l9goxTHOIALlWx+RY1GGP7rSjXkeFvwCXsRBgj34JL2Kk5Rr4Jl7CDf0xht7Kgdp7P5726sYk8voGCrGZ37YReXt8NQpZxi568xE2t43fNhJ0aZRV7a0FHtRq6B48Yi/xuFVWQYtMsevUaBgdtoDmhCjyGTcPgmKJIcAbGy6ufzEhE/C4RFa0hY1AxGjIGzcshY1GWExw0d00TAVuDgpQ9hiA9MfLrCmaq/ybG7RgsGCQ7KsgZAUlBh/eQU2yqAV3DaU6RxHyDPXlnf4xzOC8gS9BQQbN/aEKPQPnlomb7kBAzcXYAU/y+gD0XwDlMFrAuCzjOQ0TEnsMj+iEO6I2Aa7ElesXJGWAYe8XZGWAy8o7flkZMP54vOWGSg5xbE6YVRX0QMYQkZe88a3xkft8Nml/Q0WPmD4pTpDHzB8tos5OkAA2Ku/eYgwVJI5+w4581jTxoAU0jDyooimukWUMwJEGNBBoqq2qkJCrOQ1EVSTJQxgl6ZHjpJlpxKTOrn0TJbQNwiZrbBli0Rc1tAyxnRM5tA1HWjoqyoGBrUNw2yBhC5hzefz282gDpJmqe3WFXnzR3/kAIxXguaOWkGM99CTFpC8EE3/UdENBbaUhxLh6KwC8CAhOBH9CeicAP6MRE4N/Sj0yEIn+tCoYgmNMrTAQrf1EZCkHyd62hEE7xahcQQlHcoxBB8ZoXECLKXyvmsKkEwUTeNwhsKkEwkWdvx/YkT2QFZ4MQRcHZUxDvL3Xbucy7voFzWe03o6jxd28vL91crxeXl3C+fXoJ57++voSTxg9/qLv+4jzZ+lRGHihkshurvr8BSa0Z5A== |
1 |
0eNq1XU1v20YQ/SsCTy0gpdzZb916SIEeAhRob01QyBLtEJUpgaSCuEH+eynLX7Wp+s2MeYkRW5q3+3Z238xydvmtuNgeqn1bN32x/FZsqm7d1vu+3jXFsnh/eVmv66pZ38yud5vDtpqZ2eVq3e/am9nlrp1VzWZ2tbquZj/sD+1++HN3++nqx3cfm4/Nb+3wnfXR1HIWiN75n67r4de/1/9Uy5ml2dfhn+Pnfm32h375sVnM/vxjt/80e7+t1n27a+r1bF2360Pdz6i08f779x/7efNlNWBt/vdDI7ZMGV+zdP+RYl50zWq/6HeLq7beHAn6WixNmBc3xx/f58XqotttD321OH5uXzdXxbJvD9W8qNe7piuWf34ruvqqWW2P3+1v9tXAat1X14PlZiBu+F91eTk0sf5S9zeLE8nFYLduNtUR6vv8VQMX1WrAevIl+v5pXlRNX/d1dWrC7X9u/moO1xdVO1h9BP+6b6uuW/Ttqun2u7ZfXFTbfrC933X1yQluu5zf+VOf3/kBZ1O31fr013Bs4DPzxDafzpl3I+Yt27wxnOY7vv2SY9/z7ds7+yXCT5Dbf9F+GrEf+faJw0/i23fn+Bmzn/n2PYd/U8oBIIKMkTMEzTDDn8EmsgAEczhwfNQ4OQA2yF5OUQn1QDCNE8uLohwAo+hxIq+6rrq+2A7yuLherT/XTbWwL83fTwJ3a32wXe/PCOT8VgK74/e6fVVt7n4/GB1aMtaULJYki3SVSrF9guyb52p/XoNODT7LD43xQy8nfLff1n0//HFkLWE03MrFyEKxhpOr0RFgzKSXm6QzJoN8xcYcMMqXI0KWI0ry1QIDEMhy5gDYkrkcEU22Hlm+glPJ6ixfwcmwAPgTm4gFwJ/YZFkA/GlOjgXAn/TkOapgoxwAWlVselV2KCpkx/Ln/L0PeaT97nHKd/1q/feibrqqHRU1e87u2Mg6A9uNLLvyzBnjw+JhRBCMp3Pi9juo/QplxghS5M4O2ltQJM8YRYrsGetBlgcC0Bj4Uh4IYAD47H0QXWj6epKvx1jLLd5yx2q5k7ccckvvcSWRrDw+iJUkQO2PYvsRsp/YShWggc3CHDy+ecwbSrZoQl0MRiw60NCHl7P60Gyq9qrdDT9fQXg5+POHTfzjU49iDNDKNQLrkSJnhrw5eKbXmQndTrGPhrGp2EfD2ExyQcQAFKk3RFEUp95v7w/RyKUOYjMqogCMTSvWogTZd2L7GbLvhZpkyrf3hsfVoTtcDLp0C/tyOT/1bgBvqvrq88Xu0B4frCY7pzJ/GrMb8UwrC+KdmORLOOYEWQ4AeUHCw4GHFCtBjw+NVHwm8K9EeC8jq5cWctzjg4/bnj133cHxyfox101OEO88KFoSBDzJSxCzBjFIBWkKH4n8fDQhkXFKciXC5nCWA0CrUC75CS9ETTZ4PipZnzOJNdRAD1ezPAgw0CP67NgZqYEezWfPzgNBwwHXXEOSQY3ywiaM86RINUf85mEh3B36MythVui8ActhSgUEVk5SGn4wYbAqiVKg4Khpq1HaEWqA8Tal04itFNTzJQ6b9KZUPGVDvUvxnA2dI4kvdChBGZc60bJoBAVv9F/A1+gRVLw9IFgMgfhyBz0FNk9q3Zjprn37Oijj+OILdtPLxRF0giBHAJ1AU9oKdkKRuKO9yAIxJEixqBTn1hM4MxmBNIMdJUX1JeYJktI4pj9LiuMyE8IrIECi5Mn6FE4nyNbBJZQU+To6XIqMHRwuK8jZQYKsIgxwWOMVebvHEMThQHh7Z7bygh2UUM9Iyr0k+rSKsAAcMk1YANKkCQvAXmSxdk/gea5UqB/GqTMKCIxTQcHeo/qBEFYBARLlxAI7hWd4hUSBnGr2DEBOIyPrFq17gkq/Z8P2ah/k5bkmYoeo+AW6Ly2PhgqeX6KLWlYcb8V491aOAPLuGKqcJN7pFaW6KE1BAQHyFAWpdIQyTEbFn4lM04oSXZD7oCjSRSE08o0Nb9DINwhhBekithAFRdEu2nqNFoPDHATpIkgQR4NFq1xQaHDC6FFoMPQM30SBBkPP2E000lQ3v31YGYkfEIDdVMg15gRRkaaDTqCRa7ATGrkGeyGR64Qdlk/i7HkKZ86C4AHraNIk5tgwJaOQXRBCs3+P+XPSJOYghDwxn8DpkuQhPraEJk1CDnqE5iE+OFySh/ggQfIwgLAKhCx/iE9YGUWWhgNEE1wIIs/iUUIZh23vGGRGn1keFqBDprkKA6RJERagvYhS7Z7E8zQ3aYCcKjYAME6pVGwAoBCKMAEjip4U9zEFdgLPoNIqLowAOVXsGaCcMo76itY9KuWHfQm7taiUH/cl8MIo/oFfwu7ReVLv9/qRJnL4wRAy/BO8YJsN434rchKfMZpTvCNe8/oZEzKKc7ygnxrFSV7QUY3n59SEXd1lAj+LRU0rDuWi3Gt0HORecycWBkEaHceIIsF9Gy9bP7pukOKsLUqQRpRBghw/b0QJ4oixaGElhRg7jB6FGHsMQXpT5Z39N40CR0r0GErlJeczyCqO6ICjKKjdM8xhtCSQKujSI2JX7ZkpXcQ6gXCCHfWcc8UU8CPxNFKoxzjuNOJmQAw2UrrHOO0kxEzipHIKX8kC9XWQuAhq+MjzprRT3NYBLkyOBOoLEiQ/pEsBa7z8rg6KGILnJ6oRYyfwLQfMcpTqeXr7CegSP2sGCcx8yxiBXnGfNea4npPxR0lgqqjTA6eG1yT4IE2aBB/shSTBhwrRyAdx1DTBROQU80VmR5MqtImioN1nVWwjAw3iq7ymGNIg2VrAFteg2VrAZl7QbC1g60eQbC2ABHG2FkQreFBsLSSMHsXWQsYQEufNCg+XaZfAohM0T/kytK5Fze4gRlBUlPmCoxwVZb4ohDzSt9DrYEhQA2iZCPyH/Y6JwJ/QnonAn9CBicDf9o9MhCx+PRuIkOThPYpg5C9RQyFI/h44FEIR4KMQTvGCHBDCy99HZrGyAkH9njk/s8chouIVOiBRSf7SMAu9eo6SQrNBiKzQ7DGIT6e47RjmPbwodF5sV4Op4XcfTq8FXS5nT94V+uH+XaG/3L0rlIZvfKna7sR9Mi7mQQwylckOod+/q0djPw== |
1 |
0eNq1XUuP20YS/isCT7uA5O2ufuuWQwLsIcACm1tsLDQSMyGioQSSMjxr+L+HGnnkWQ+181VVePFjRqqPXa+viqxufq7u9qf62DXtUK0/V7u633bNcWgObbWu/tUddqft0HxshsfFw/jvfb2wi9822+HQPS5+O3SLut0t7jcP9eJvx1N3HH/db5u63dZ/f/e+fd8+f//QrheR6F34x0Mz/vjfzX/r9cLR4tP4x/lz/2yPp2H9vl0tfv3lcPyw+HFfb4fu0DbbxbbptqdmWJBx6fn7zx/7YfdxM2Lt/u+HJmRZk96S9PyRaln17ea4Gg6r+67ZnVX0qVrbuKwez399WVabu/6wPw316vy5Y9PeV+uhO9XLqtke2r5a//q56pv7drM/f3d4PNajXpuhfhglt6Pixv8dX2h5ddFyNQpu2l19xvqyfFPCXb0ZwV58ib58WFZ1OzRDU1+u4ek/j/9pTw93dTdKvX63/nTs6r5fDd2m7Y+Hbljd1fthlH089M3FD57WnN+Fy6LfhRFn13T19vJbf77A78QTW3y5JT5OiHds8dZw5Hu+fMuRH/jyiSM/8uW7W/JpQn6SyzeI+2S+fM9xz8KXHzj6t0YOACnIWrmGDLQCfgTbdAtgyoWsIIYjS0VeDgAFgQ1yFUFeagVhnFkqSnIALA6+BfKm7+uHu/3Ij6uHzfb3pq1X7rX45yDwT9JH2c3xFkMunziwP3+xP9b17uvPR6njWqeupXxPl7dJwj3B35RPU/LJiCmVIEqVU7aD5JOclM4LmBLp5CLdDZFeTj0OcVl6HdX9cd8Mw/jLiZzKsF+Up2zMgEmejwhJeCSg5cICKPJ8BAE4foySZQHwg5QMC4CYGZVovpTq+PFNjrVafrQTsQD4HE6BE5QuygGgtOL4UU+epaL8Jm9SUvCm+xb0/bDZ/rFq2r7uJtPts+8E5Lq9INZvyZ9SvLfwdSfWdZOY5z103Q6vg6LAnt6Lrx/Tu6J5xhSk6J49dHchyVeAqUjRP2MrKPJKAFpBMPJKAAPAo/dK0FD4BpInfMg9g8Ov3LOu3MuvHNN5wJlEknlCZDNJhBSTxEySIL1ksfwIyS/CLjz99SVjNGzWhGwUXxfep3ZXd/fdYfz7Dd55baXl9T77+clENQUop2nIaFHRO0NeF70cAFtBYLqdndPvopyxsNUmOQBmryynRAxA0X1DKkpG2rvO4BDJytkOW62iEIDslZyYNgok34vlZ0h+ENKSNTO4w4va4XQ3UtMT7usUflHfiN7Wzf3vd4dTd368msOSrPkwJTfh3VYR1Dwpw3x6bVIyUuKnIqcHyL2ykQNA/pWtlH/mcLBMuKESx1DZCSqfK/VkQemTvQQxaxADFJ3nRzxP5vs+PsfoJpem4jNHfh+YkYI0JynZzeJ9md80YssscpaDorgYOQCUh4rFu1JJhi7E7kot9Py5yPnfYlMS8gLAQs+fS2A3g6BqoqIbnLj2a4Y6nIYbKaok+UQVZo2MVxKWJI5a+KWEBcdhFFyPaccaq4DApiWMgMJRBalIfEJFgMdao+JxKWjgEy4W9NZEPsmhopOchVDvygoIMEYKTnWiFGKt4ZMd9BTSCiberuHtsJE6kiMQhuCkHa+bYR7qxYAczL6grYKcC0FbRTkCaKskYEOCkr3NCqoC9aPo3kEFkRG313N4M1kBOWP2kkzGFaYynQICcwnJ5BwzKikoIEBFCfp1MGuRvGOfxaEFLTu6UkXTDtrJKdp20NucoiIIGIKiIvAYgrgiiDO4nJOP7qAaDYwmNkgqUKeoDECbKcZ3UDVpKgRwFUVM33O4nmBa7xsBYiv2VgGB2U0wu2eZEeSdAgJUlBcT4SyuoZjRRVesmNJF7ZYYvbco8/nM770TVC8Ixv3oJsKkdoJ8WNdGDIE/rgtq58XE39ucliWWDU7OaaD+FcwP6j8I+ukE9WchKtgS1I+G80EFZUEDCypIMa4LKigqBnZRCA1/YzaIGv4GIZyggcUSUfSCjhEUreFgUDEaDgY9iMPBokwdBRycMQsoOLhgm4EVHJwxBCvtdssMdWUifkWA2Sop+Bq0lYKvQVtJ+BoaWLJJw9egfjR8DSooixvoWby5CMoHzF5Z05tjysxWQbwghOYuPuZ1WdObgxBeUD5gWSsHcds/h0NnydN8cKWap/mgt2me5oOuIK8ICJsXKPKKgLChhyKtCIjmOCFEvqcH1Shj8+1XkcwKtMgrA9Rmig24qJoUFQK6iiSl73lcT3O2BrhixV0AzG5kFHcBUAhFpYApioz4jI05XIOMUxwhAa5YsfUXtRtj868o85Hhb/8l7FgaI98ATNjRPUa+BZiw04dMYXe7oHZezvy9uXWKPL43g6xmU++EXt7eaEKWcTOfvMRNreM31oQdXWUVW3pBR7Ua8gfPOYv8ThZVkGKTLnr1GiIHbaA5Jgs8C05D5JiiSHACx+urn8xIRPzWERWtIWNQMRoyBs3LIWNRlhOcdndNEwFbg4KUPYYgPb3y6wr+2jJwYmiPQYZBslmDnBFwFXSCEDnFfh3QQ5zmREvMRdjze3ZWH3FeQJ2gvYJmh9KEOoFizEXNBiUhZuJsNaaIHwVALgsYz0O0xJ7mI5rTD70REDC2Uq84twMMaq84uQNMTd7xe9WI6cfzJSdMcpATbsK0oigaIoaQpJSe5wiTzO/JQS8QdPuYFwTFMdeYFwTLaMGTpDgNivv8mJ8FSZOfsPOpNU0+aAFNkw8qKIoLpzkiMSRB4QTaK6sKpyQq3ENRVU4yUMbZfmR4WSdacX0zh7tEyQ0GcKWaGwxY7EXNDQYsg0TODQZRDo+KWqFga1DcYMgYQua8a+B6yLYBsk7UPOzDrj5p7hGCEIqRX9DKSTHy+xpi0haCccDrKyugd+mQ4qg+FIFfEgQmAj+gPROBH9CJicC/+R+ZCEX+FhgMQTDtV5gIVv56NRSC5G+IQyGc4k00IISi1EchguKtNCBElL8MzWHzC4KBvm8Q2PyCYKDP3o7tSZ7ICs4GIYqCs6cgPlzqtnOZd32L6LLab0ZR489+vrwxdL1e/M+LRH9+fpHoT19fJErjdz7WXX/xoWx9KiMdFDLZjcXfnwe2dRU= |
用于中期游戏(蓝瓶科技)的二级插件工厂。
产能: 27/min
尺寸: 32 x 16sd
输入:
1 |
0eNqlXE1v20YU/CsETy0gpdzvXd16KdBDgALpLTEKSmJsAhIpkFQQ1/B/79JK7CSi25nXg2FYJoePs+9rh098KLeHc3Ma2m4qNw/lvhl3Q3ua2r4rN+W7U9Psi2O/Px+aQhcf693UD/fFx34oju2+uK2PTfHTfH4x7tqm2zU/v/nQfej+GPIZuxljU+jwy7HNn71r/242hdHF50L5+aDfu9N52nzoinXx/s/+dFPks3bNOLbdbXHu2qlQxl1OfT7i1/2nOl9kX+zaYXdePOQ7i1WhqjgfUK7KsatP66lf3w7tfr7Rz+VG+VV5P/96XJX1duwP56lZz8edsg3lZhrOzapsd303lpv3D+XY3nb1YT53uj81mZ12ao4Zucss5L/G+crry5XXusyYbbdv5ss83qzKppvaqW0uSE9/3P/VnY/bZsgHPGNMQ92Np36Y1tvmMGXsUz+2l7V4sti9cReT37iMv2+HZnf5r31cXcFqGDYwsAaG9a/B+gVYS8NWiLWOJgGC9TBsZLgNNCxkbXyGrcexOW4P2b/Xx3p313azq16B2y/g9gk8Q7enRQ+/ulCiPVn/aL9egFUVvYoG4UUp2ukMZK+mcTVkr6F50EjsKUv7Hcavo3ExHjzp0EpJPVrhIfn1Gg66hUjjWgj3JQQ/1uO0bruxGab8nytY/Rrskkfrlwg89JnruzrXtv2/oPvXyFhEV6jRnjKar4DQ2mk+DKG105YkOb1m9VKQa4eSnF4zehGWL4UYyXwtxEiOKA3KUDzgtU9ZhghT8cAQE0bRKShAuJrG9RCuYVNbQLKEscLuKLC1xLxE4DlH9nA79Pn3f2SOa8pXz/uPeQe1eCHP5lOMqSAsAh5Cj3RWxdwmEazH/8G6rdgEG6CNkRJWBQ+hazrNQqxbI23R6LCyls7oGPGOT7xQgrSeB8ZI55vVBOHyzWqEcJMw9aqKdRL3EpzjeTtO9RPqtY9fSMnYXdPe3m378zBLNkqHmyVQJXVywQ1o3mmgxXWGB4ZW11naaxSkkjjHA2NikWc7jGvcpdLmgqDwL5j8XIP68/RKEXKRLf3gLSRh7b9e0iV4zys8mK94Jaj+Muq9Zuv/9XWW6pA3wgZAQcKr58UfkHpH12WQEEH9BE0OAmRMMOZLqII0Np94YEhkCxWdDCFxNChp0TdszQxamrQgWToYOtdiDFk+GUK+EvinIaCveGmKgvTpEOjMaiDcyKc+jOjEA0NEx0rccdLRExWfvyHao6CVxXiPgl4WJF7QzELyXhQ0s5C8F700z3raUwKfVzByeE0IJEcQoJDFqeKBIYuTfK9Jr2eSBChGjyRAMX4EAQqpNUkQoJBak/jdJiSkpkC3JRhulHZTkLqcEh/r0AKqSrC59BiyohsTSJVVlZY2VAHDN3yaAskWbCdBsgX7SZBtyYYSpEOyowT5EGwpE4Ys2FNGbOCG31QmaOJGiXeViR4J+Wa8h5DzkuCRklJGmnMjRpulawW4HoKtJuhCXqLoydgP0iwcobyjIl0+EgYsaG8x9rV8A8oHmhbsQDGCtKTDxZKnlrS4IPl8j6sVhsw3ubrCkKXbUK15fwnEQz6tfnzK56qbRdQodXnJLQjGiMA1lgwSgYssGCXS2ASpYJhIg7O09DiRxoaVvxkowtuDBaOBR07KOLZ+ozfhhY2HxiakDS8ZoR4TBf2BlP7EFnANDmRXws5DGwxf8ZPZGP1W0zUb5URQWFGjrQAaSzNWUFmxCXJmjOgrMjZDbgOdGqE5b2Wl30T5gs9UUiudWNDQcLlyFZ16MZKc4lMj5jGOH4gHPcZJZxQ0NFytnKUTrcOABV9RAcnmB+NRsoO4IeXDyPHz8ij1klYX495LWl2MfC9odTGp0AtaXUwp9EaadiPtL55WlDT0eEB5XlFCifc8Mkg8PbigMf3e85MLKBm8dASSEcTSkcANgxJkAIyhINCOUIoMnwIwVSoIpCNMlAqObhYxbTqIt6AgvmALClISpd0QphsLxotAy2PFV3vM5igJSMy3JfNEKB98QBponloRA0WGRMYLpSaRPf39fhQZj0VLIvMjRAbTUyM/sGAwOZUYIvIcG4nXfQw0k62ImaFEIhMxWJHQRFVUJDSh+2gSmhB+DAktGFdYgr5ZXd6Os/nm7UKr8lBnqPzZ28vreTabL6/refv1BUO/XV4wlA/91AzjxY2jsiHp4F3+UeHx8R+F8K+l |
1 |
0eNqlXE1v20YU/CsETy0gpdzvXd16aIEeAhRob4lRUBLlEJBIgaSCuIH/e1dWYjsW3cy8HAzDNjV8nH0fs2+f+blc70/NcWi7qVx9LrfNuBna49T2Xbkqf9vt2k3bdJu74tBvT/um0MWu3kz9cFfs+qE4tNvitj40xU9nkGJ8uLb5+c377n3355A/sTkDrQodfjm0+Xd/tf82q8Lo4lOh/PmiP7rjaVq974pl8e7v/nhT5E9tmnFsu9vi1LVToYy7fPTxil+3H+t8k22xaYfNafaSa7NVoap4vqpclGNXH5dTv7wd2u35kT+VK+UX5d352/2irNdjvz9NzfJ83TEbUq6m4dQsynbTd2O5eve5HNvbrt6fPzvdHZvMUzs1h4zcZSryT81u1+QH/9hOd8vL/Ze6zMhtt23ON7u/WZRNN7VT21zwHn64+6c7HdbNkC94RJqGuhuP/TAt181+ync49mN7WZsHu90bdzH8jcv423ZoNpe/2vvFFayGYcMX2AqBNTCsZ2AtDXtFgp+BdTQJELceho0MCYGGhayNj7D1ODaH9T57+fJQbz603dlVr8DtF3D7AJ6h2+P/+PnV7RLtz/rlU+gZWFXRa6kRF1GKdj2NsK40jWsgHgzNg4HstbT3YTw4Ghez15NurdSP+bXCw/PbO33vQSKN6yDcp0Dc1eO0bLuxGab8lytY/Zq5c/6n+TiEaNCKxoVo0BqlwVM0PIXhvs+O96HO5X4LoDsInQ9GjGQ+GDGSPUpyes3cudysA0lyes3oWfSIGq0MZTVeAZVlVs9UPDC0fEbRKchDuJrGDRCuEUqaIEv9xrKpNCBRbnh5itHuhbnJQ1YHNqFiZDxF4ymbO9wOff7+HTquvWXxuEk77zVnFzPRORBi3VbCZOWRpGIVm2EDBKsJ1uMPsG6NVK4JY9ZaOrtjjDk+CWP+43lgKFtaXrhGCJcXrgnCTcLsriqZq7inyB1P63GqH7Cv3f/yCPkOXdPeflj3p+Hc0FE63MyBKqnDix9D8w4ELbQzPDC00s7SHqSgTopzPDDUS3GeVQLXBs9VPxf4ThVmcBRqgWv4WbsTKwYwPnwlUAMzvvFYmPrT9Epl8opvu2FdQi0UBArqbXrDKoJrfmZxrUASCKl3dI0Gn0FQS7HM4oMAGXMXvpwqqAPnEw8MteBCJS3URlbhgqKzL9RTDfxhCUZ94Ju1IPWWzrsYE05aLqAmfuBPTkCiBWcnGNGRzrIGyVAhSYsDdKoRK7H6FMZmVHwuh5iKAlmLOU0U6FrMa6JA2EItwCgQtlALMHppLvdCfxEoXoyiyANjFPGNI8ziVPHAkMVJvgcVrmqSBCtGkiRYMZYEwQp1dJIgWKGOTuJ3oVBrNwliEmNCEJMYE0mqVwI2dFDROstjwIJdJ0S1qjSPHDBkI9UsUGdVVZbWWh4DFuwzQWTJRhNcR8lOE1xIwVYzYsiCvSbUKlRKvNlMwnkPxe82ExT7SrDdxOhXhk5XoMlWmmcjhu8k/b4kOIhSSrAHBdkPdP5K2IhalCbeiOEnSctPxL6Wb0ylcawFO1NsXbRE7WK+pCVyF8ukmte7usKQecGrFYYs3Z5qLfWaQBwKavXyVNBVN7OoUer+8gcRjCOB6y0ZSAIXXDCSpLF5VMFQksYmUo1hBYPGRp+N5WefQZOl/V4NDit7VpCglASBYJjxEOCUSpnIj0aD9Eu7wBpqnSpbsYpEY0Pzz8aRcMUgpN9qun6jTyEosmCWsVYADQ7qC6osNonOjCB9RcZm0Z/NIJH12wnLno10MoZGs5VNfDLG6HeCf3HB6HeKTsMYGU5L64fF8A2fekGyBf/vApLt6KQLzasr56XVwmL4QSxOpVHq+Bl8lCyJ7MVcx0tkL+Y7XiB7sXaiF8herJvopdP4Ogq9xgv0MMgSP5KPssQrYeyIwvOjDygZAt0LkpHoFIkdIQRxe0nsjEEJsgG2AEHQXwJXgJhMesHQd5EF7SWscRUcLemw7jMxlhRIMoJUH4GWC0IUtFy8NcV6zrHiKz+ILAlIjBTJLBLo3JEPSAONUitiGEmTyHi1NCQyHpGWRA70+wlQ5Mj/xz+IzG85DdbBTfyW02AN3IRHYXrV5tn4TvyAA4pMxKAioYmqWJHQRD/IkNBEQ0iT0ILxhjnom8XlfTyrZ282WpT7OkPl3729vBBotXr+lqC3X19u9Pvl5Ub5+o/NMF7iLyobkg7e5S8V7u//A+dZ5nQ= |
1 |
0eNqlXMlu40YU/BWCpwSQJuy9W7dcAuQwQIDkNjYCSqLtBiRSICljHMP/HsoaLxnRSdXLwfBGFh+r39bFJz6W692xOfS5HcvVY7lthk2fD2Pu2nJV/tZ32+NmzPd5fCj208+7ptDFTb0Zu/6huOn6Yp+3xW29b4ofTjDFsMlNu2l+/HTVXrUvZ3ftqtDhp32e/vZ7/qtZFUYXXwvlTwf92h6O4+qqLZbFlz+6w3UxnbVphiG3t8WxzWOhjDuf+nrEz9v7errIttjkfnOcPWTOcFWoKp6OKxfl0NaH5dgtb/u8Pd3213Kl/KJ8OH17WpT1euh2x7FZno47TKaUq7E/Nosyb7p2KFdfHssh37b17nTu+HBoJq7y2Own5HYiY/rt8M6A5dmApS4n6Nxum9PVnq4XZdOOeczNGfD5l4c/2+N+3fTTAa9QY1+3w6Hrx+W62Y3TJQ7dkM8L9Gy4++TOln9yE/42983m/F/7tLiA1TBsYGANDOs/gvUzsJaGrRBrHU0CBOth2MhwG2hYyNr4ClsPQ7Nf7yY3X+7rzV1uT656AW6/gdtn8Ak6P7v9cGia7XsPv7hQoj1Zf2+/noFVFb2KBuFFKdrpDGSvpnE1ZK+hedBI7ClL+x3Gr6NxMR486dBKST1a4SH5cg0H3UKkcS2E+xaCN/UwLnM7NP04/ecCVn8EO+fR+i0Cd93E9V091bbtv6D7j8iYRVeo0Z4ymq+A0NppPgyhtdOWJDl9ZPVckGuHkpw+MnoWli+FGMl8LcRIjigNylA84LVPWYYIU/HAEBNG0SkoQLiaxvUQrmFTW0CyhLHC7iiwtcS8ReBxiuz+tu+m7/+ROS4pX7xuQ077qdkLeTafYkwFYRHwEHqksyrmNolgPf4P1m3FJtgAbYyUsCp4CF3TaRZi3Rppi0aHlbV0RseId3zihRKk9TwwRjrfrCYIl29WI4SbhKlXVayTuLfgHI7rYayfUS99/EzKhN02+fZu3R37k2SjdLieA1VSJxfcgOadBlpcZ3hgaHWdpb1GQSqJczwwJhZ5tsO4xJ0rbS4ICv+Mya81qDuOHxQhF9nSD95CEtb+yyWdg/e8woP5ileC6i+j3mu2/l9eZ64OeSNsABQkvHpe/AGpd3RdBgkR1E/Q5CBAxgRjvoQqSGPziQeGRLZQ0ckQEkeDkhZ9w9bMoKVJC5Klg6FzLcaQ5ZMh5CuBfxoC+oqXpihInw6BzqwGwo186sOITjwwRHSsxB0nHT1R8fkboj0KWlmM9yjoZUHiBc0sJO9FQTMLyXvRS/Ospz0l8HkFI4fXhEByBAEKWZwqHhiyOMn3mvR6JkmAYvRIAhTjRxCgkFqTBAEKqTWJ321CQmoKdFuC4UZpNwWpyynxsQ4toKoEm0uPISu6MYFUWVVpaUMVMHzDpymQbMF2EiRbsJ8E2ZZsKEE6JDtKkA/BljJhyII9ZcQGbvhNZYImbpR4V5nokZB34z2EnJcEj5SUMtKcGzHaLF0rwPUQbDVBF/ISRU/GfpBm4QjlHRXp8pEwYEF7i7Gv5RtQPtC0YAeKEaQlHS6WPLWkxQXJ53tcrTBkvsnVFYYs3YZqzftLIB7yafX9Uz5XXc+iRqnLS25BMEYErrFkkAhcZMEokcYmSAXDRBqcpaXHiTQ2rPxuoAhvD2aMBh45KePY+o3ehBc2HhqbkDa8ZIR6TBT0B1L6E1vANTiQXQk7D20wfMVPZmP0W03XbJQTQWFFjbYCaCzNWEFlxSbImTGiF2RshtwGOjVCc97KSj+J8g2fqaRWOrGgoeFy5So69WIkOcWnRsxjHD8QD3qMk84oaGi4WjlLJ1qHAQs+ogKSzQ/Go2QHcUPKh5Hj5+VR6iWtLsa9l7S6GPle0OpiUqEXtLqYUuiNNO1G2l88rShp6PGA8ryihBLveWSQeHpwQWP6vecnF1AyeOkIJCOIpSOBGwYlyAAYQ0GgHaEUGT4FYKpUEEhHmCgVHN0sYtp0EG9BQXzBFhSkJEq7IUw3FowXgZbHiq/2mM1REpCYb0vmiVA++IA00Dy1IgaKDImMF0pNInv68/0oMh6LlkTmR4gMpqdGfmDBYHIqMUTkOTYSr/sYaCZbETNDiUQmYrAioYmqqEhoQvfRJDQh/BgSWjCuMAd9vTi/JGf17pVDi3JXT1DT3z6f39KzWv3z5T2fX9469Mv5rUPTGfdNP5y9OSobkg7eTV8qPD39DWV2vDk= |
用于中期游戏(蓝瓶科技)的电路板工厂。
产能: 1080/min
尺寸: 32 x 32
输入:
1 |
0eNqlnU9vG8kRxb8KwVMCSLvd1f91XWyAPQQIkNzWRkBRY3sAiiTIYbCO4e8eUvJKsjxtv/dy2DVs2b+Zqa6qft1TXfNpebs5DfvDuJ2WN5+Wd8NxfRj307jbLm+Wv26G9XTYbcf1Yj0e1qdxWrxbrafd4ePi3e6wuB/vFu9X98PiLxfG4rgeh+16+OtPb7Zvtv847O5O6wvnZuFddT/fj+c//ef43+FmEWzxx/l/l7/223Z/mm7ebBfXi9//tdu/Xfyy2++Hw2K/WU3Dwmf78g+ffv7b+Xb+/OkX7PJqedyu9tfT7vr9Yby7PMYfyxufr5YfL798vlqubo+7zWkari9/bz9u3y9vpsNpuFqO6932uLz5/dPyOL7frjaXfzt93A/nZx+n4f5M3p6f7/y74ckS118ssTxzx+3dcLnU57dXy2E7jdM4PNIefvPx39vT/e1wOP+FJ850WG2P+91hur4dNtOZv98dx0drP971T+nxtn9KZ/7deBjWjz+Nn6++wRqMtR42z2ADjA0MNsLYyGATjE0MNsPYzGALjC0MtsLYymAbjG0M1js8HhwFJgLNU2A81DwVax4PNk9Fm38Ot3er43R93G/GaTr/5FsukXF8+pr6w3v+M+YcRM/wPRfingt5z5m650rndoO4jeYGaM5wX1tj3B6Hw6yNrYedczd7jrzV8Tjc327Os+z1/Wr9YdwO19bP8Y/0M3t8mHXXD9P/9Xp1uxmWc9cxbjALZZugwaEBtYgaPvews4ZPLBYbz4xiWw9rc9jCYg3CVm7gKjVwTYNDLhccGTfea4ETPGr5p3kGGtFg/AR2MfscipgLE+PMIfJgyDUCLj59pNwi82AoXQRcgPrChGAg5sFMmaLxYGjwIqFCqWwUCRVaKTCx4PMUGI88cxQYjzwLFBiPPDMKjEeeJQqMR55FCoxHnlEhHfHIs8yAEx55RkVewiPPqMhLeOQFx2S3FHgwlN1SpNcPCeImmhshbhYXEJnTQek5DI+n2+O0ekB+K+IeLXImb4fx/Yfb3elw2dnL8crMvZ3jVlXIsQ/QeDEDjWx2PBga2ux5MYOBjQdjpgi85ojQrmKEvO+yEJ1zv7PzWq5z7pcTn0cwU2QejA1eoRNJgbj8hkyGuI3dOMnQhrDT9hwgWxSvwSGDFGN3HjCDBBZbIGxkdx4KIgxKYrEZwmZtzwEbuKLBMZer9D4DZhFh2oNuuArTHmTmKkx7GFiY9jBTBHGnPM9v6NQo8kqHJ0xy2IMLkxw2VPwk1yAuP8lViEtPcg16j+hEcd84bdzE+Q6yeRNfPUCGb/SsVyHD0y8dsPGkZ72G5PhGv3SoEFac77CBE189YC7X1EUlGTjeOXrahobUO89Pr5BtvDOeXDFy4CdYkBx5MmiN55Dc7M5O8mG1vRvuvjeOhUkk3mWV3zC++pa+zmsF76oIbD0gHYxtPhhna8lmalnwN/WeMrUnZ0kzyhM9vC40LpW8qJXBBsDS/zcAkXR5K9zzkMU01n7goZ6NUavcDRdeJoM+U3kylnGFOhqPlRWZ48lYSZFcTOONnPZfl9P0K64K9QDkQjJ3LT/rhxY1JY4ObNIkHYon93ZaFz9fqVjQIW3UkMrvN3inFLZ6QNsHYbMHNFAQtntQtLDhgxokqLIOdMcAr0CfyQ4jJ1HgPfBniVkl+h6xqJrxddSAmiVUWjSiA9l4MjaQ0Yl6FPTxqOpdMDwjL3i/Jc9OdDHwZGwKfVGYQ2pp0TFjUsU0aqssXwA0WRHlejffxKoSe/nmRckOuQIArfyidIe9AGZlooTnaSUA5gGliAdMAUQZz1NyDBiZr+Px2AGDlNi9fg+VmPqURXkOWqSIeNAsld0yR83SaDBU3eyzY7fNPVTa7bOnwYaBTVxhYUOYg4jHHDBHeq8ctUsSlifgTWcBDZq7CMsTEF0FNGiQxi9MsHgsTl5TYZmELevxX2WqWaKpxNAjBn65AD59VOU85hglqXzMp0vmRT2WPl4U9rASGLyALFi7jtdUYs/xqq5QMSNURaFirlcVhYp5XRUUasLIgkKNGJlXqAlKIVUtNv/Cx/cyqypWQdtXEQ8OAC9ZoTJo3xwNxka28ZI1QVHfjAZHDKyKVWwIWxTxmAO+qARiXwuwoYRXBz3LbnBsi6CNQftUAQ2ObBO0ccR6BDgBnTC0l8UxlFrsRVkQe4GEXUCtkn14gFmiWif7cMezxCS/d0jK9q65zMt90NxFleOgQ1aVD8ZS4+U+lLbMO3kPXxtk7+X1BfhEpq4GeqHlg0rshRZfFVRJIwhV7qCve6HOHXRzz1e6+4KR+Vp3nzFyU5cBle1a44hTp77Mn/u7im726KnR9ULPIox+EKHoFhxnE9p/gANtQtktihZagKAGkUtuPXQkzvBuPM/kjJHV4lvfOUpkbBeeZ2LnMJHxrXdaJ2rA6RNvwWOeG8hgPBkbyBBUdYT5eJA3c7HwDIlXX9B5RAvCNm7ByEXWdaJjVlnXgbZq8gUwk9ElRO1H+YYuGmo/yjfRZOGIWTkG+QKglaMgH7E8EBXRi6UAoqPPU3JsGFnQvBUjV3rnGzrGY7GJG8aYRZLYzQA0S/L0tjFmlkT3MvANAwd62xg6i2GJ7mfgKwZWq9/BIRQ7G6AOWPhNYtAuyk4ueNNKwTtm7qzs5IJopeAdM0g2fmGCxWPW692xTJLlvdzOQUbLcp176xGFzVrw6V+F3+ls3cP7w+786w8F/bded/XUi//ylYBZ6fqiQAhoqGTu9c7KZWcmx9ldlSxs3GKphC4QskJeQBavPScs8s5szwmLrlZBIyhqFctPRVGrWFYtvFo17GMRhVer5jAyrVYNOnNiRd2g/cLH9zWrKFxB21exMQk4AJWWrwYdzbFKtyUBR7bS8tU81gmcbk1iDgOLwhUdQrFJCeqA8vFNPpQaLcHBsW3C6U3QPk1oUwKObBNOb6JooVEJapCoCmUwtTS5YQmYYpp6mtM657WsqT1KzPeIVX0H8Toswa3exp/ixMwdXncQIqT/jEs+Sf/daepo/+A8LdCxRBNe1BCRO/DasAQX1BUB+kRR1O+9YAhO7V7SC4bg5PYlqBGE/iVYugxOaGCCJfng+A4mhn1ZwfMdTAz7LoZXO5hYZD9rQnYwQR9A/RQQaPmoNUgx7JssbGeh1sXPpnqvSmHQOGQHE3RIdQlMO6WwoQsaxxQNjBnIhA1dFK1oYNAg8o4u6O3GdzAx7Fs8pu7sWu8LSiZr3tAjyh1MXkcNKIWM72CCmlvQvpiLBLWDCejjQe1gAoZn4DuYgDNR4DuYGPa9qSB3MBEdM8gdTFBbyR1MUJOpHUy6+SaoB0K7+SbIHUxAK0f5fCho5SicDwXzQBTOh4IpIPLnQy1hZP58qEWMTJ8PtYh9L1DsYIJaRDwUipqF7mCCmoU+DmrQGZ+Q6A4mBp2lCIk+DmoRA4sdTMAhTOKhUNABE9/BBLWL0MEEvWmhgwlqbqGDCYoWOpigBmnyygeLd7yxkC9cwGe1g4l1DnqFrHYwsdQj8h1MULuqRe+gz2W1gwnoeJkvfQfTR5Y7mKAXkAVr1/HUDiZdxyu6QsWMUDyvyKAy7lCMJ2eMHGitV7APIkd1q7qQu4JsY6FC2l4VreAAFFr8ZWwAeLkKjmyjxV/BPnXNy9WMgb0o+7AhrKpoxRywBnmDnQ2lKghYcGwVAQuaXxGwoOkVAQvetSJgwbtmz3SSGbE5lY+ZpskqtnPqLDRZxZYeke1WUrnszfYX8o3ks1rWkXxy1jRP8tX2JShfFrRdH5QFbccHo8O6H+THz6bP1ei/ncWqRbVQkXd0cGXBY9sGqxg2iO/moXNh0Yn9vlA8+8rSk3z2BaYj+fQBFW/9K/z4gEp83V4IuGACLtgvi4tOnlUxB/byrIrFnZdn1c7hlejlWbX1iGpbof49ygV63XsUl5sBqoePXvyMEYoX6+FRfBXzGMpvYh4D+ebkPDZzBSCPmRqVASqgjKbGaHAYP4hZK0Dl7PF1lRAwIA0YkO/kebZ6yEgXZmuJjHVhVhkHkq829kP5rE5OHJ8uKookny0qIieIwB4ZzSRfnYNDp6Q90s2IvjfpvL1ajtNwf2bdbk7D/jBuL4TN6ow6/9nfd3enzbC4uVn8+lR9tPjlsfpo8bfVetodPp7/+n+Gw/GRV30szUpO5/98+fz5f5u0ZCs= |
用于中期游戏(蓝瓶科技)的集成电路工厂。
产能: 180/min
尺寸: 32 x 32
输入:
1 |
0eNqlnUtvI8cVhf8KwVUCSJOuR1dXa2cYCZBFAAPJzh4YFNWWG6BIgg/Dk8H891CjFwORw++cWdiD0VCnL0/VrbpV/VX35+ntYj+sN+NyN735PL0btvPNuN6Nq+X0ZvrD3R+z5Xy4m8zHzXw/7ia/zea71ebT5LfVZvIw3k3uZw/D5C+PCpPtfBwOn/3rh1+Wvyx/2qzu9vNHlZtJqM3fHsbDD/89/ne4maQ4+fPwv8dP/XO53u9ufllOric//2e1/jj5aTHb7sb55Ha2maTy/Guv//rjar0eNpP1YrYbTvzz3xfDfLdZLQ+//xLu64emV9Ptcra+3q2u7zfj3eM3/XN6E8rV9NPjH1+uprPb7Wqx3w3Xj59bj8v76c1usx+upuN8tdxOb37+PN2O98vZ4vF3d5/Ww8GecTc8HJSXBxMOf5s9m3X9fPXpQXVc3g2PF/ry8Wo6LHfjbhyetL7+5dOvy/3D7bA5fOBVZbeZLbfr1WZ3fTssdgf19Wo7PjXHU8wf2qegP7QH/btxM8yf/jV+uXonG7FsOidbTsgmLBvPyeYTshnLZiXaFsu2imzBskWR7bBsp8hWLFsV2R7L9opsaHg+NJKwkGhBEn5Lte16Me52hx++l3zJsggEeZKFKEXK0yy8JERD0jfwRAtZEn5Ltf1hPN3cb1aHPy/F/H7IuXodtx/nnempK3X6V2Cm8/wLRfKmJ/2u44NwbOTBPSLdIDTii3Iy2jBGpbekc1eK4EpGiiY0bWddmDWCkaIJCRd9UEkkcWJH+ncRLDAykVnA58LQnWu0U70hCZNhr3SzpKRkqJczZbXfnUmVFPXvwMwRcrBKwjwHY5Bc5zkYG0m46BEzKzo9YibMczEmJRcTz8Uojcy50SNGVuSgR8yEeebFVrJCWAVmSTjrETMrWj1iJlzAJBVfZpMMBIWM6yRvqy7MLBAyrijCrZBxVbGiFTKuVwafNurCzIqkW8GEecalRrKi1YVRFdcWecOsRbqdrJuRbjVWP+351c/5Sqvt5fVbRttdjbyXyHSDvOvHdKO87cd0k7zvx3SzvPHHdFt554/pFnnrj+l2+tYfE6761h8T7vXVOhLuhIWflHNd4ItqNGx20dmhy8741iV9C4OZkpXvUC5/h7P7Rl2r7xRkMo93RV8Ms/bt9OV7i0yvesTMil5fs6KIa6OvspmwsQJkwlFfszLhpAujxqvGChD142qsAFsUcdEjfrTilFSnx8hcrfoSjfWDXl9UIuG+0YVROd4baz/UwXpj7cciTvpKikVsrP1YxK28lOqQrr70K0i3kxdOLN4q67J437Lut9l2dz0ut8PmZCXXHoV78mZ7Q5XyJaUgL7oK4wGivEqEwvpyDgrr6zkorC/ooLC+ooPCHe1fIVzqYMYiDgbZ6+tOphxweoV44esr+ErUgoz6WhMqGws2NLAGh2TpWMzGfXLohnGjHCp3+qoS+lydlfF7p8HqPoRevz1fSPUbjsAW8C3OjsmACwlHrMuljO8vZHyM+gKZ9fEjegX40V/24xutqgAtVSmCwhHRcsHq12X+WasVzCyGy938Gx2k0zcRYC+v+r4HVDbuqbOemIyb6mzkkgiXGL8n55Oxy1LO9MQjqOUb95NfJ0tisbGjwqadxBOwu5CARwDLJalyScq4gc7SIEl38sp3DZsKxtJLiaFwLL00IAsgS2q0mKOuDGNO8pZCz4SzLFyZcCtvKsCIcQ6mc7on0ybruyvQiaoGXFnAb7k3226Hh9vFuLy/fpjNfx+Xw3U8v6Hx5MdBfPya3vOvh5au57PbxXAyyY8AF3ahENwr8bL0bOOenAOOiBcqXJmwsXZk/VxAXl6VWYc8Yl6E1VLv3AsNCgbTaf4Yq0noD07Y16UAG2JaNWNfC2A1kUojfwU26BTjHmA9UwIVoyDtz2kZd/pYhh9hL7DRittorV7ysFwpvG6t0rgqsDCvIbMkLFUOGbZnrxdpzGWBhnlVZmZ0xunbwJSjrsyOfXXGGVwYc9aVYcytWqq9Fz45bB5xL9v97XY3+/rZ97dDnm04KC6H8f7329V+83gaO9T+KpX+40npzq3OQvz/AerE8fATl3vLy8XqcKHfZ4cS4o4UVCEwq3q5VHvfCKdPODbG2UnWJQU05k2a9ckaOQpHo0166USls747To0woDQqXdzCzMqhI4AG5lA92wqne7pewcKB7Iik+dZA9ridfnokO4yEqZaTI1lvbPnAbungNLDv9FEuVOB45RA11A+DqaF+6FRNSExZ52pCZMr63g+NWd78CYl1Dv0UBTMjHsE2bHRKZ/VPnpc+QnC0fatnZ6SxNjY4PTupAeIRl3NBuD/rz8mj9QKXU6XOGA0wh/aZYleF7HkDAqGTRLurUbpBv3tDGj6rotEpDRi1gvC0YtTRqA5h1E5NC6WdmhYa4tS0ULrYRSYbAEOnF5lshgh87yeKyr2+TQh7STQYAdiUnNaJWRtWj+AdcXPTmoyF59G8leHQ/qyX4dAjY1uWNqyao7Fqk5uA8bzV+dDwakhDW3q90EdHCaLypJoX5cyUg16Pw5ijW4+jIywxGRu10JPsRp5Z5K27kijG4MXhn/5sA5xMUgEFqmLXMR6qCJu2t3edW8P73OjlPzP/iAZSVy6ZXSAaiwDWvNmAD2D7ZoNcp1G3hjSMuhiVOozawA2otPHAN2qI8cg3KN3qiAGckNpg78Y7Y0sb7YUSm6bapC9noFPZWHOwTik8GCcmsecUe9HhzNutwShQk6pdv7PZqTX4WtgKpbFjZxNfMThb6HsxQFtqi07aho4p66htKExZZ21pzMWt4NHBiliMGy/QE/3GS2Eh9/INBSYs4ENVa0UBH6qay120lwHVGMqPmCK1WO/QmNVl+wKFXcA4t0lbuRjSsJk7o2SHUVdDGkZtnNSEUSsoUSdKByNqZojwnJ3QidLJrtmdgaBmu2ZnE9MRbKRegI32yvN4ktiDOkMaNnPV70SwgbE6lS7zo/crXTZrWHQRM9yhi5jhFl0EDXfoIuiHQRf1TNmgiypTNopcGLNe5CKuPzp0ETIj+XQRwvuTTxf1+jyUDLqoZ19Dp4sqe1WDQRf1rGUNugj2GZ8u6pkpBl0E7XboIui3Qxcxwy26iEVt0UUwaocuglE7dBGUdugiaIhDF0Fpny5iA6BDF7EZwqGLoLJDF7FeYtFFrCkduogNq99BFzmTsUUXQfsNugh65NBFsGF9uohNbhZdBA136CJoi04XRXSqIhl0UWyYsk4X0ZhduiiyF7EadBH1xKWLYsMid+miaJwJSzpdFAN7/ZhOF9Guo9NFtGltuug5dM17gy6C5vt0UWzYBQy6CDavQxfB9nXoIhq1QRfRqA26iEZt0EVU2qCLqCHOCyWZtEEXwQnJp4usscWni+A0ZdBF1CmDLoKd0qGLaM+x6SJr3nboImqSTRfB2cmhi2Ar+HQRnPgcugj67tBF1BadLorsfaIGXRQjU9bpIhqzSxdFdEItGXQR9US+8RIjC7kXHhQTs/B4hdQ16r0KGHOnPMO2njf68jNsk88bxWwM7j5vFNkLkX3eKMIXIxu8EcxehzeC6eXwRjRqgzeiURu8EYza4Y2otMEbQUMc3ohK27yRNRD4vBGcqnzeCA7StSgP7jkxs5x/BFk6Ao7AE6fTd80ABoEEh0qHQII55hNIcB5xCCSYaQaBBA13CCRquEEgUT90Aim2TFknkGJmykYhDGPWC2F0tCkZBBIzI9sEUkTHvbJNIEXj9FrWCSTWAFknkCI6F5Sb7CwXrFeN56a16+uWfZmi3zqANnVGed2yDDCgJJpcvVFes6gdKAlGHZwaGEbt1MBQOhlRQ0OyETWU9itdNnCFot86YCM7Z5JiFJWrVUF7g2Lo9RKajYaxsffenbkvOlUvy61oVL3QI4NSgqkVs73MYHOSACu9ldXQ8GJIQ1s6va7umHLVlQtTNspfFnOyy190cio7qBLzxEeVCos8uYW7cYQtpyzX1+g0Uk46h0+7TtGVYdPaD7F/Dl303n6IPW2D3r4AOr2Vs/Ese9jK2XiWPWxmhVZqxaiTIQ2jNgh9GrVB6FNph1aChji0EpSu9uqATU/ZfgeTNdK0jf192KTFX5kWo+ZUa7yeCfbN1nhbE+xArf26JmsWbw18n5pk4/twkrLQJdgKPrrE5r/WeIsT9L0Yr3GCthT9PU6xZ8r6e5xiZcrJrbrRQa9c9Lc5UU8McAl6Ir+DNFZmRifv5kNhg9WHLve6MnO5M7B8dHApd06JC4N2SlwobRxCpdJOiQulW307lvXpzniECuzUnfEIFeqHATDAXu0ADMyP6gMM6Bhkrs5WLjO8Glu5zPDqAAzQcAdggH7wafHF6dQwP/T9IaosrDiDKC3s4TaitHAzNGnSwrvSQhSlA3/hYEJEfe6NSTE1TNo4pUaNMCZFGrWx75PQeaCsUERVlBaysBeleRbGRpQWpsUgSbdNo78Nm0oHvQI5Jf3xajruhoeDzO1iP6w34/JRYTE7SB1+9q/V3X4xTG5uJj8873ZMfnza7Zj8YzbfrTafDh/+Y9hsn7KkhkOREbvSHv4L3Zcv/wM54w3A |
用于中期游戏(蓝瓶科技)的处理器工厂。
产能: 72/min
尺寸: 32 x 16
输入:
1 |
0eNqtXE1v3DYQ/SsLnVpgN9Hwm3vroQV6KFAg7SkxgrVWdoSupYU+griB/3slb7B2vGL1ZpxTYlt6Ih9nho8zJL9m14ehPLZV3Wfbr9m+7Iq2OvZVU2fb7M+2Kcquq+rb1VBX/epmV/RNe7+6adrVXbVf3e7uytVPE8CqK6qyLsqf33yoP9Tje/uhmEC2K6/e3lXj795V/5bblVarLyty00O/18eh336oV5vV+7+a49Xq3XC4GdqqWO2KEVu7/PTi+e+/Hsqib5t6fKKo2mIYG0TGvHzql/3n3diQ/fNnpkeyddbVu+Ombza3bbWfOvsl25JbZ/fTPw/rbHfdNYehLzfTc8ex09m2b4dynVVFU3fZ9v3XrKtu691here/P5YjQ1Vf3o3I9UjE+NPxzNdm4isbQat6X07febhaZ2XdV31VnqAef7j/WA9312U7PnAG6dtd3R2btt9cl4d+BD82XXUakFOT39hTm9/YEX9ftWVx+qt6WF/AKhhWpWDNDKyGYXUK1s3AGhjWcGAtDGs5sO5p3KtjeTKsZqj3l7DuG2w+ws4Aebh9jtO+AMN6Dmw8w97sun409H3Znjq+gJ5fWNb67EZTLMhmPkY53InI8QvC/S1wyKEnh+uOh6rvx19etjRBxxwe7mnECgyE+xrlLGDc20hzYg45HFixWoz7H7HiDgV2UNcQE5GNqxBc9eRsXb8r/tlUdVe2syasUu2d40ERexZSEO6Ts+26rry7Pkwz792u+FTV5UalZw09E4nG/1fH+Un88sMaJsqlPjk7W5vvY2s6hATcWpSVBmyVDtjN0CcitnIwN5FlRJ452EQ/arQD3KNzRMOGO/JDpUKAdc6PaJAtaeIDQ6FHK3ZIsxCuZuMaCPeFpy5HSgMNnP1OU6YFqp1XktotvG8W3vcL7/uF94M01hiBONSRrcChwTX5Agvu/1kwtPB+WHhfcVkMr2DRaJjFyGLRLLAQF1hY8gWiBYAlZzgL2xSAR538HJ4NtMwN/CiKUR75wFAYtTk7jHoIl5/2cBCuYitZD2UStFBxntA5qsMaaSj1giBgLVvRemRCs07aCycRn9azZwQ37/s2SGOwiP7IFs2Qvbpc2gsR/Y7YU0mCfqekap/vaU7z9T1k/M7wwzEU3pzlA0Px2Dl2PI4QrmfjBgg3cGV4gAYuCsM85a9ca/pnKZjhejTHR5TE8j+On6rL6vbTdTO0U1WBvL2aAyWpM72+P4otoQIS2LzmewBkUV7gs5ALeMuv8EB5Uc/3WYJyz95znYugfKsPbHF22eBZoxCXJiiXTHchZ4umyw/NMRSILWMwWwkv3BEuDGHoWqo2hPwbtmrCDClYto4BGXI8/gMPnb9eJaySKMiAgpYuWLFi0SsKcqAYzVFQq4eyq5GfBCUouxqly1YybDUdDZiCfGz6HACaA00C8Avzj+MzB+XBTGCyLUEYcLFxjUJ0rMyY5/wwmCCScgKzgSkmKVfC2Al2VgvhFQZv0GRkmgA4IZqGcOKVAD8SUC4prIN0ClKoqCHwq+sEJVGJ+FlUMhgysaW6xbbJ8BOpBOXAifg1dDJYm40wKoKjaIXw4FDy6+co414Y4UBeghAe5CXyxa3FtmzlAnWLmaIS1MtBPpQSQGMjqfhFc/IYsuEjOwzZ8gOVx8zDScWzf2XyjJ7teYFjpMcMU6pLwdGQClPMjHTOj5HYYGsSBjGw4VINi9GutVjevdpWtRFEUcxYtaDcgTLmBNDgWPNrHhQxZP6+UgoYcmTryIDtNs7RrEBMLF0WN9XYRQSFLuaTCJqfWcCIN1LNCsJLNStmkIs7beIis56fagC7LpWlYNejEB5rvc3htEGKWktw2iAJwa/iEVTGIyuo46HUCSp54KBbfi1PYWccLL+Yp7CDJNazBbLCTjk82yrDE8jf8Fkyg7FTxiW7MTtF8ffK+PTYAiebHL/IpxIHyMgJ63qg7TB2yESe7TgjLRkKSedX9tKkC4t5KOniAw8Sv3KCEh/qWIIaH8iRFxT5wEjs+VU+hSWYPb/Mp7CsuNdc+a4UdkLOSEO8ee268tm+meUdUUq/3BLl86tZVHEh5Af0iF+mV9B5OPKCqghqWhInxvwh8MsiCktkBoEPY9nXoNiehhVcgubLNCz9z9gt45LI822WnzA0kn0/FPgVftRivFBIgfCBL6TA0Y1iISUbg8jfHACSFIU5WBSev5hVWCEpCjaSgy4WBYtZMJRFQXYVpVqwmsWSq5GfXFVYRjiKV7OBr7pjBNOiKnFOQuU5mBZNIxCYFk0jSFefDruVQAvhPQaPnlNM998KAxbYQOk6E6TXoynGNAEBTTGmIaJYkPP9TpFk3YjRSZIj8pghkGDhGDFkfsVfBQyZfVD+ssmzdycQv+CvAnZbiQPu8Dnf65G/aOs6u6kO0yuXlrj+pqc+Htuqacdvjs+041o1YaP84r8KGHXC4j865BG5AynBn2Pydyhv5ulT/D0CoH0oqT7F6FMCfRqxhkv0KWZSSqJPQT4k+hQLe4qvT3WO8eHZN+ShyIF9mRKKHNn35IHIjPtoDBOZ2JfcaSj/qxg30vhkm+eRNfvuOQ0dW1JacKkbCm35F9Gh0IKL3VBoz79hCYUW5FrnoK/Wp0tEt88uYl1nh90INf7uj2Y/HMrt9tlNrH9PN7H+drqJdXzyc9l2J/8IZHxU3sVRj2v18PAfeKD2Ow== |
用于中期游戏(蓝瓶科技)的石油气工厂。
产能: 9360/min
尺寸: 32 x 32
输入:
1 |
0eNqtXE1vI8kN/StCnxJAnnRVdX3pGiBADgEWSIAcdoxAlno8jZVbQksarDPwf0/LGkualZ75WPFhPmyrn8lHFskiq/p79bDat5uh63fV7Hu1bLeLodvsunVfzapf2t2wXrX7p8mX+WK3Hp4nX9bD5KlbTh7nT+3kT4dHJ0O7befD4uufP33uP/e/DOvlfnF4fjbJLtR/eerG7/6z+287mzg7+X386/Cxv/eb/W72uZ/cTX7913pzP/nrsF+2k3W3muRQ/3jq9MN/z3ftMDE22tefVNNq2883d7v13ePQLQ9y/17NTJhWz4d/XqbV/GG7Xu137d3hc5uuf6xmu2HfTqtuse631ezX79W2e+znq8Ozu+dNOyr7ZbUfsaZVP6o2frl50/3ucb6tRsyuX7aHX/NyP63aftftuvaI9PrF83/6/dNDO4wfOEN0I/C02qy33ZHQVzmbT/4o6Cf/8jK9etz+9PhRx/W+X14D+QugabXshnZx/Gm4Aeto2Ixg7Q3YRlDW1O9r62mxjNGoGyS53qxQ35Yr8nJ5DV+JlQvwlaXnw/vPm5pXLGoIN4aVDDBueMe3RkO5cYJk1gqcNbxkTsUZ7/02qlSW3N9mQeUoASQB4OzoY0y/G9ovXd8Oz9dAb4T5P+o1kj7+v3sNzfPlt3m/aJd3B6zNsF602+0hqN/6xdIKeTO2BeGXXyDuAkm0tWXTApLLkoTmDybU8pkjIkJu+aiVUkcSCPHqjMYZKrApDQkWSUudMseHmSrxwd2pbJXZtAU4cbU+n1LWcnTaQZKx6+qUdD7KWo5fWCZrrOWklWUFD3Zen4o5awU2FSPJ+LrMehVnUmFmJT/K+lzuGM6ampXM3ZasMbxk+X0lG6uHctQ2wrH1BpKsYQEQS14AcLUAENhA8mb+8EGBpOEXxUmJBigh7k9+PJ/A85l8PoPtIJ8n7IUk4iLyUppwglyWfB7w4vlY31xIIuslub0X5PLk84iXQOsVkL1uxQMv7T+ioBdfCSWVH0n+nd/nK9RquTLDVzCkXICvwAf2U/lLOWiQArsRIkJoWACkmqLFZDU+GsSNghAUgqLJ1Gi8NIhRXFjWIeslo/w01qxkgLPIFzOnyp9y1ChF+FM7DHAWHQuAVOPbTCZpHDVKQd4I0SGKZbuwiKOibK9V/pRYyZBqirLdavwpiWW7EB2SYQEA6UnyaCtEgSQW5cKSSIrGadCYPSk2qEllNbpxilSOZAFsQBs8sRW4AZ3XlMmSDkmQz5673T9sd/PXZ6/ruSPIaJ6qb7vHrw/r/XCYh5m6mdqY7m8hG3W1+CqkaLZsyXIRkZYd2YyEAA1ZgEEAzwIgswV9CXfN7q3VliNbgkHZkr4GIy2f9fUAp7WpazahI7VNbQqmbXByZ/X1AUeiqV3B7A0q3VDx4zDQuBlAxvhjbbi/Ce312Zq1dmDTLVY8FswJobX5JWMbpbUzWxhAVU1NQyAFxYHxWS0IYekxJ1TE6SsJ0qM0Y+OfssPPPcGb0J4tEizSO7AIDiFEsiWGERI5qsUIZ09efG2fusV8dbdZzfvdO1VPc2W8i67raoxDu9eW62KYL35DM2bFkDhKlhAHw1FiwVq2eIEIjt0hYjXEPk0SITwNARUJ+o2moUZXxkY6QUAFEw0BFcz0YRYEcTGLFQYVp4LpauQZCg9nOD7oIxJdwQwKc+HoDALlaQoyiOUOLnn9YMc4KoOIk1h3GS9vItDx3yOEpI+iDaddZmMqkk2cumYRwbBRGSJY9bAAWquh+/BYHP6sJ4TwbMscQ9Bdd8yFuJ+1ohSJLjzO50P9e5XH13b+7VmuPOQBa5TU9yVHQD217sQxqxEd1ZfscpGZfMm+lgsx4uTVigtKHL5a0Q89v2uFELFgTw2tl+h8CiFyQX7n3DPU7BkPKF0wBSkZUR/YUwWH1tVtBMciRITQ6LdQ6QO2UIqxbBRZCGy6hyxEfaoNnM8ltgyAsmU64yEIeewqelo0dOKBELYg8UCVXEGeiJTJFIPYc5CHSvuCpiDnWpEP/pDFSMdrqGAqiNdQnszGs4TuHdQsQkYIRh+ZEmWwRI+poGyO3ZZABPbYPUbw+lgJrRXobQkUJ9LbEgiR6A0BhOCDNILIfJBGdF4MWPltSf6AbUmmT89g2V1BdsjUust8bxJK5wvSDbR0KMgJULKS+p2LVznRGxSoaqZzVEYXstT9Sms+qF9p65Jyn3JKW7PFv60RMWzxb9FV41pf/Fv7/xf/ttYX/5gFtvjHLET2JhpE0B83tjXnJXRegQQZ+hwDhjBsswNSVHK9l+RIvuArLgTT0BeTIETB2QRMOH0ODUPEgms/hiM8sX0ULF3WB1ZIvWVrfgsv17L3Q6xDCFYf0izFtjicjaJsjT48QaZK7gZCsMAdFTJHmEZx1tDy81rMW9LXaaxRM73AEXmKO7VnMKSqoxdAgxDoesYjBKevRsIHVCOKCW4UWfDsYoUsBHKLjxHoegYiFNQz1NjEKq7Jnu/Ze+reflPrj4JeQ99+VQHd/ISUNgVzLZJTebYrGrwpaHlaz0lX0ACFy6uhW55Y1UiXehAiFZR6pC2zerMbP2qzqxgMu1rnBPT9WxvQ2z7o9BIRQsGLTAKnXcMGfSib5xt3J+qPTRxttvN0foGmiAUxPFCBVpwfn/rBWDr+TOj5rSVlVCpu8546yNdE3H4JjWEvSkIiNHd6G52ZAl+pnXNPIcdNQVYnOfZ0VoccB/bgLIaIBYUBaSb6diQMTOLw2YoLUhw+21qEoO9CQkXE+73nTA0hXEHahyo19AYQQviCDSA1ArfiaNnJNjv79Xa3HuaPo4Dz/rd3XnyGBgAXE+b3ugTxBwp/n8hGejoBhUt1QXlLjV+sYhB99jdu+JDomzM2IcXZtpRDPUBxFB1EBE/udDECWw1hBHr+jCHoqgdDZHaEDSH4+TOGMOx74jCEZQsfDOFoCNRRlifGom9murrAEIHd2GOIyBYoGCKx+RtD0FUEgnDibVz7s4PfT6tu1z6NHz+/33pareYP7Wr83j/Wy/2qncxmk/Mrrv92fMX1+Klv7bA9VlXJNDGP2dCPf0x8efkfK8P0kw== |
用于中期游戏(蓝瓶科技)的硫酸工厂。
产能: 12000/min
尺寸: 32 x 16
输入:
1 |
0eNqlXE1v20YQ/SsETy0gpZzlfurWS4EcCgRIgR4So5Al2iEikwJFFXED//dSVSopFkd8MzkYtmTu0+zs7OPj41Bf8/vNvtp2ddPni6/5utqtunrb122TL/L3+83DvqtX2XJVr7OH5apvu+fsoe2yp+H14/Kpyn46DM92q7pqVtXPbz42H5t3Xbverw4Qi4xMURS/PNXD2+/rf6pFVprsS0b+cNzbZrvvFx+bbJ59+KPd3mXvqr5rN9X+aYDeZRRPQ09HvO3aJttuln2VGfv6n38Ob3eH94/D8lm+a5bbed/OH7t6fZjdl3xBfpY/H369zPLl/a7d7PtqfjhuWzeP+aLv9tUsr1dts8sXH77mu/qxWW4OY/vnbTWk5GGzH7BmeTNMfni5+5ah+SFD+YBZN+vq8DEvd7O8avq6r6sj0n8vnv9q9k/3VTcccILY1gPwLN+2u/qY9mOcb9wx0Dfu5WV2NdxMDC9vDy+/G35MUbtv1tdA5gJolq/rrlod/+tHYO1EVPZ2VG5iuLs93E8M97eHBzgngcuJGYGNJ9gBq+qOmPP7atPzwMVr4CGx3+qvPmyafORzEjj7Ynz2VMDTT5KSoKlCj7dXhQw4nptXObXRJrYKWTgxZCSFQQ4H/oZrmBDPlb/6VD3Vq+VmPpBk0/M70F6t3Swf/q63Z1IbKzIKE9n8PwMlE2kEx3MzTSDvMeMNXuX2Ammyys25yvtu2ey2bddP7PESqRFjFOxhePZo9z1DH6aEZ5BEM7AwbhThOhiXiAO2Y8AeBy5EEeMnGCJuKUeBo5yhmP1ppvYXTWzQEt9gNLFXS1QiOWa8EfOrRQqkLEEO4+KyYvFlGaTzHnhY7vo5Sj3YNP334HWzq7pBYPPKwiFMWQYprIVgoy4VDkpFutD797t++d+h17x4RBzwmqp+/HTf7ruD9CdX3I1p5UJOYBahA4ufi05bEAM2OLARAZdy0oAWzuInH7IiYCcHhnad9WLS8uPkYINYFEadKLSoqAtMpElMiB7JpSt0nBAgcNKBY5EblCQjF/PYPnMlXBInaXMNDNWEs6iQYMrXOTknMPXlvFwfYTUQ0GtLbpJRTiNYZEkODFWmL0BRlhiPhsT8FqG4DMhBXFxyRywySFYqcBIicLyTwkYI1utoLEGLEnTg2IpHKUdGhCN9kvMOlIxQoIzIFFYgOY0x1R6MnB6wSZZyYGi1gxXzBjGOYHAgVRBnFMvtNjI6aRWC3KgvoHwqr5eIIPSkRIdij4V05xPm1JNcHo0gQwsbDWxLM2UcS4UvDa1etHIK5PZKdCjrsfP0ckoB5xkUyFiFRvTuHuPDxSSnO4NElgqU/JjIEskZiTH4kpFKGioRTZNKMS5k8ierZDXId05KMw9cdy/mTMh7TkHBFVg+FK42W7Swrc3VKhWFgiygiVJBCmiDQcs9cLJcBlDfmxyHYOXCyStvVBZOzlMWy6nykokcBq+8aEKjF182Xcc9eje7SAr15HTqiUhxm4kty8kWhTMEtzfIKMgKq4fpBgYzGZ3CBkejUxjhYKWSR0VU4OYd5OznsdhQy5uPTW56k+daZJRGN0GuMRkS66kAtQYZuQD0GHCpTAi2+uaVENxtN3V/m0MjkmehAkxstsejlktAj9VHgBmKrWCFEY5OW2GFg3UgaXY4FQLXpkYooyQOwYjVlSmU6qpUNJBGLKdi+5wg/5y0zRIE2cZUalUhu5xCHRjZdIznOSrJBsx2UsJjVXLRPDEpNokt9muxeW7kHvlMXCZya2qNQraCGVE472CpaLoo0KgdqPEM250rb5gwBRYb2uvKxxbFLGm4Nmb7akMJ2kGP053sAKWLfolbbU7xiGpe9zmV6W4UVaweR85Ko8DnzTTEuvp8AzkJkacuudLUyjsrXa3IF+d07z85+O7wuesSbFL3ioZOroidwnE3kJdPmlYKkAic3Iw3bKc+6r8broPek1zmabv9vZETGGZM+lJNZ+UlnfFbwlvxAy18zh1KCOy6ezUhlJp2fvJBoZDKH1NIPiq4AvPIfZITHHQDg4LC2AeDDgpjH9w/waDCiXM9QylnNcy4CxblODY2uXlvOPMzKC/MeEClQc/PNooVEtRqTyGJgaFme7rowIClFxbyRQ8GjAzGbHTX0wYzwmOphMf2VLQKOvc/RufTvRvlVGlHD0Nw203TpYGumUYzguul0IycOQr3bBjuZkNSaEblwwCUFJoRs1uT0tXnE6ts6ODzDOtEFsHLVSuYPaWfaDCbPUUlPBi9Qv9Bdy+MprEDC9oU6BOMJnGPK8v7N0zEYkO7OfjY5M8xmshhKc15HlCr+tjZip9bNJBTbgq5+osYcELJiJszFSgCtwxESlbAipguLcC2Wz4OVbhsPt/SRAkihcmmi9Oz6tz3s5BFEQoOAT2ZHBHuZnndV0/D0ecv9Jnlm+WQ6OG939v1flNli0V2+k6fXw/f6fPb8Tt9hiP/rrrdMSGRbEgmeDf8UHh5+Rc+FkpE |
用于中期游戏(蓝瓶科技)的塑料工厂。
产能: 1800/min
尺寸: 32 x 16
输入:
1 |
0eNqlW01v4zYQ/SuCTi1gb8UPkZSOLVCghwIB2tsmKGRb8RKwJUMfxaZB/nspe+PsrsTNm/FhkY0jPg8f+YbD5/FzujmM9anzzZCWz+mu7redPw2+bdIyvTtU/eC3yabqksdqO7TdU/LYdsnR75J9dayTn6bBSb/1dbOtf/5w39w3d127G7cTQJkIl2W/HH149S//X10mSiafE2Gmx/5oTuNQ3jfJOvn4d3t6SH5rq0NSvD5/ffmuHrr2UI/H8Ib9GfD8RLpK+6Y6rYd2ve/8bgr9c1oKs0qfph8vq7Ta9O1hHOr19NzJN/u0HLqxXqV+2zZ9Wn58Tnu/b6rDNHZ4OtVhvn6ojwG5CVMLv50us1+H2acB0De7enqPl4dVWjeDH3x9gTn/8vRPMx43dRceuAIMXdX0p7Yb1pv6MATgU9v7C7XncO2H/BLvhzzg73xXby9/1S+rGawkw2YIrHqbrg8czMDcVzEuDNfg8Gx5eH4dvv1UH/22OqwD683CpPQXIP39pAIv4f/+NF+x2buZd4J9JU4tB2vfGW5+PNxdh49hJ3X7rg0/31lCOVvC1XWvTgJammUBcyqyGKkGJ1Vk4BaI0CIEOF5Gxr8J4zEEun5PHeILXI6oQygeuIbA9bfgvunrbgh/mcHKWMxyCTYnZwqMC4OGa0jhWoYudFwX7ThEhCHcNzvtcnZMbxafgY7suQKlwsWoMEspPoMDdD8OUArivlWUnSAlOn0hSfNXzKghuUnN07KFwHMeuIHADfmYtDcck9JS85JBhC4dOS9h1BdkWUO4KiPHC62mEtQ8CtGrJDl5YDQoej1hb6gnlKbmVoPkFpUzcwtGkmGiYzvGkvMtxonjJa0CCrrggTsEXGfkjCiyG1Kipl/qIJK0BO8UReT6pchxYfxqMC4XiSunJ435AhGyhjbgLSJGpAXHxybsmAkA2yYFEx1a7DzjKVVAvkUumOiQfZFLaq0yj3rpNM3pwgLp0NTTHwyYfusDGTbk8krE3B5LPdrnc186x3JHLn2iIXKVhq2+ycgnOUaB4V74sE1gmCbL9DYAOtNlERJCf1NcP276oTo/OgN9DTgANrXff9q0Yzf5uyLPH5ZQGXrDyDB0YIwHS1cJFrFjHPbqhsPekO2XOUNLIrIZV0QQT5atUWh9Ld2VAWnhyhMykyzTlhGQ6WPpnzDMwyZcFKwh1yMaOd6tpWcFjH66KQoCF/SIoSV1GbmCgih2gpHGzA1pzEn0s7c88okS/OFdxCZ2mpuRoC3guJ4LuBEMM3NAlo6zTHTI0nGOnpfcDXnJMdQI0VRkoFNwhlsCYHxeDlFcoN7KGW4JQJHLDIucp4WmF2KxENkKwxbX0EsKjALLjRtbeqaxKSA3pmA6mwJyY0SWkUuIAvqgNWMorcBCluQjGQyZYcOALGt63RPx/kSW0wUNEmsYNUlxUzcH3aNxiOJFxnVIUarYzg22YQTDusGYEUyHVAoscKZ3IzMMXpErmXnghEpG0Ntm5jNZTDaMxhl0CegeKopMvxei6+qoOR2lmdGgJuUtOU2iLWpSxHrM4Ca1LIYgmekJ3Ajs3hlwO3C7Z6TC4Jn9M1Ji8PQOGnlLp6mQDF2CTDnwWiNjDZeSfhcEaVboZVDGmjnx5hgXpW3xkGW0x8SDZGsNW2K8BeZaaqAscO+L6AZgWjIS7MZlejIS68dVjlxZYC2uiqE4jBFNNkPBkBkdLyDLmqFEkAxGq9ocmlJZaHKz2pykRaFqtlBBqrgNa+gi01vWUGaY3o402L4nXiMVDZ7aayOJ8MSrZE6EJxaxmghPPFevKQ0yM0WumfAGg8+hPoPJR5hA3feNBkY/LMKinW0y4hGLnGu2orxynR2U2IK5bg7adYYoyetxh/lS1M4cS4yeKMkiGv1itqW25jgivGbCY56doZ6ighg+9RTNiPhs5YL4VOVKIj7XkwXX1zKlqzBPxTKlqxYslYfV5dvF5Vfft16lhyoghdf+bHfjoU7KMnn9yvWvVZf8fvnKdXju37rrLznAhdKqkNbk4Z+wLy//Aw6lGdM= |
用于中期游戏(蓝瓶科技)的电池工厂。
产能: 270/min
尺寸: 32 x 16
输入:
1 |
0eNqlnFtv3DYQhf+KoKcW2E3FO7WPLVAgDwUKpG+xUexFdgSsJUHSFnEN//dqvantVCL2nOlD4NhefiYPOcOZIaWnfHc8VV1fN2O+ecoP1bDv626s2ybf5D9vx7HqH7O77X5sz1/bPnuoD9n99qHKfjg3zIZ9XTX76scPN81N83vfHk77c+NNpkPx00M9/fBT/Xe1yYzOvmbKnz/1selO4+amydbZ5z/a7jb72LdN1h23Y/XW6vWXv7RdV/XJX386He9Ofb3PtvupY84WLx/IV/nQbLv12K7v+/pwHtnXfKP8Kn88f3le5dvd0B5PY7U+f66rm/t8M/anapXX+7YZ8s3np3yo75vt8dx2fOyqSY56rB4mcjONfvpudxEnn2B1c6jO/OfbVV41Yz3W1QXx8s3jn83pYVf10wdeG4/9thm6th/Xu+o4TtCuHeqL6i9dDR/cpa8f3MQ/1H21v/zWPq9mWA1jfQqrF7CGxhZIby0twgzrF7DuFdvVXXWZ+fbUHObY8p0ICyD/HSjdvFhuHuDhxdRkLA0v0lhoMkoYq75hDYJVxSv3bjuM67oZqn6yljlWp7BLK1K9GdD+S/VQ77fH9eQYmoXu2m9cO+Ou8un/dfe9Cc//lEZH4KkRvBnV0B3rcZEYX3gaEpq3JmwCHTr8MoVdWsXK08sY626AF4ZSqZXhwZURUWmUobQhbNEy4uiCNnIHcRXNtRD3zfQm/131Fz9+ZVXPyavXbfscbyzNpDZXXH14J8dSe3ulvb/Snt+zMAE9IWD8PwKGKwLEKwJEcK9NtReYDKSgKXgwZDOGt5kAcTXN9RDX0DtuEO64ht/KMGmcwJ34tDW0pzFhDsbD9uzfjWCJFEDP4hPt+XAR07IUeBaRlragfWNCS6tAJ5PQ0mo+tgjC2MIa3u9AdmwtD4ZWhHW04ykhrqe5EeIGNjMpkbjeRhYbIWxJu19VCP2vK9iMBxqCUywWEtxpereA1p0zNBdad86yCVWEqh50nlZCWD5Pw9TlqyOYupH30XNDAZ20K+kEEJpLX9BcaDK94n0/pLrXPBhaJt7Qzl9BlVJveTBUR/OSIHMBfT3n8m+mOZx2w7h9aZmoIanJdeZNVd9/2bWn/lyTVk7dLlHRgFOlqqaRjn1BZSUhp0jZUICBYkqDoPgaNKRBEBgaSBYEnJipBYGpQeWswEecCqqlBs8HW0YYbIUg8RdGkkmFiJq2Tizrkjdts4yKhcSYRcOOaNqXGnbUvDWnhm0E4YkRhidRkOphBhKdgAzZdOSzPQXV22LgwVCFMNIJ35y7lNfEkuY6hFsWvHPzQudW0ikfOAb6TA7TvORzPmz1lXxJE1t9JZ32zblLqULpaa6DuIJTcUxhvtAJKlwKXLaXHikWfOqHTagqFE92GFkSlFrs9oAkKnUYWhCWBowsiEs9Rva8GwH7HHgy2Gc46kyU7VUhCDuxvqmCdxqYnkrxZLDPGg1nU3oqw8ezYN8kESeIloSc4FwJYs4SIwuCzoiRIx/FldIbUMSFlMAJRNxICZxAWqFuJybMRGve7ZQpluHdAaig5cmggg51NEkFPe9okgoKLnbNJUTDMB0F3gaUVXBVBVwLhr/fpRVG5m+r6AIjazbNnYOX71caGqwwsKVdr9ZS12scm+mi8ngaDMrDR5LoIow8GVyEJZvtaugqurIFDVYYmI8vQZWt5smYylZQ/JxbDurCraXzXXRSHU8GZ9XzewMqfhCgwRUT+c0Bu8xt+acSNHZb3hWCY5cF9vXDRPXu3sv1c1pt/3tO6/3tIlWD8a1OHEUoZ+j4FhXXCg53hOKiQWpaBj5IRWWQmByIFsSnoM05gc1hFTcvCE+xMqHnHwea9xkNybzkqYQFiYCjS+UFNpq4Iq88+pDCi+iLBCexa+HIBWaZHHlAnURy5IJrZfOBo6GLF6SIoA0GwfMMoBEGQY6IFegC/0yDxqqKgX+qQUep4wiWzkgDlHIFR4M9BubPG9ApDXT6CWoRaTCoBV8EBRdh5E8hQJWjotPPACUqUdNgj4H5QimqshW48Ch+NFSQI4LSe54Mai+JV8GFKIlXwXkVxKtYObUUxKtYDbhEDyd0qhxe8ocTaN8MGiwl+2b50A3sm+AQEJ1sSekF7DV/CmiwIi5x6cWQZNyqNEXWBW5VjiTjAaglyfwzRgZ7YUvB3zgzBUa29FtbUDUc/+4GqLKqifstJUkmbLAg0cTepkg0sbdpDk1cfVGGRAseM1pC364uL1ravHsz1So/bifU9LPf2sPpWGWbTfbvy6l+vbycavrMX1U/XNZvVDaUOng3/VPh+fkfHjdQaQ== |
用于中期游戏(蓝瓶科技)的钢材工厂。
产能: 135/min
尺寸: 32 x 16
输入:
1 |
0eNqlnM1u20YUhV+F4KoFJJfzP6MHKJBFgQDpLjYKWRqrBGRSIKkiruF3LyWlthGR9Tm3i8CwI30anpn7yys+l/f7Yz50dTOUq+dym/tNVx+Gum3KVfllyHlfHPbrIRcP683Qdk/FQ9sVj/W22K0fc/HT6c1Fv6lzs8k/39w2t83nrt0eNyfAqlDG/fJYj3/8Uv+dV4XRxbdC+dOrPjWH47C6bYpl8fX39nBXfOra5vsn+XB+V7ko+2Z9WA7tctfV29PqvpUr5Rfl0+nHy6Jc3/ft/jjk5el1h7rZlauhO+ZFWW/api9XX5/Lvt416/3pvcPTIY+XVA/5cSQ34+rH3/rTBS7PH1uOwLrZ5tNnvNwtytwM9VDnC+b8y9MfzfHxPnfjC94Ah309DOPfFuWh7euLbueFxss6b9zI3dZd3lz+z74srnD6FTd066Y/tN2wvM/74RoabtwZWyFYA2PVd6xBsPYV+7Duh2Xd9LmbVEDPUfUE1b1S8358XVdvlg/Hrllv8jXYvgNPoDwtJ3TdgcZqBBtROT0jZ2KpGqGqCtYgMtIqRXMhbZVGZUhzWD+FNSzWQFhL2IBS/20EyqFrVIZaJG5dylJnINDuykHcSHMtxE0Cj+WnN0tXtG+Brl0rmgtdu9a0vWLrNTQXW6/IsuY2y/EWgK1SYFqYrLxpBYjLm5aHuIlNMTwSvQxvZZAMhrcySAaj2SAeIBkMi8XUtbTtYuo6moup69kg7pH4aAKLDRA20uEcW27ifQ4kr614MHQerKKdToK4muZGiGtYZ5YQc7NWkH6k6Yhm30zsOFbA3a5rx58fuLBrURevNfapuC+nPogvzTCNA+vSMI3p2ixC2ETIHf+H3I4v1yC5nWJ9XER8kaOrtQRhjST5mzEVZ2k/jC1SkFRieyVIKiF/6fikUkHdMMdnlQrqhzlJxab0TJPpzbb6430/rM/vnesCqnF1Ta53f963x+7UUlQm3E1RleSszq5R83uP7ZE3AjK0Sd7yuw/1F7zjwVCTyXs2wCuo2eb5hiOoRBSE+wktXgNQexxmIpCn+5CYNqGiuVDbNPCNSEzzoAUxX6Z5oLuTCur8BUtzoW5q4DuVIFgQ+jCTD0FAxs6JIPhBPaCQeDDUtYoV7f4cYopRSaK1m46Ekb/FhskaDQ/GZLW0h7OQrI7mYtvlec+JKRx4MKZwpP2ZQ9xOTDTXItxUiXLDGYtIive60OUnSdIJbViSJJ3QGUuCpBNqViVB0gm115KXeMc4cxYEmSZ2+ZEHY5efeKcArVhVfM8EW7KqZLXdzJ6pSmJn4EolhgbKK7C0hJEFphYxMl/gRWyaQmB3oBgCwwPF4Cs6TAzFl3QJAwtqOkxlxd8GB1XmJ0wU1GZUii/iIgYWVHEgWVLGgTJL6jjwbPCFnFYYma/kdIVNS9Gl3PWSJ01QS2q5M3uSpgX9qwlxP76BojRf3qFa0/XdNXhaa7rAQzfRC1pYQtn5mg+VnS76rq9g0ktpuuq7XvH0rKGo7Js1HsPXfaACRpCQgrtmBAkp6E0Nn5BqbJ7R8AmpxqZajaT403buRATiTpY2P97J8tXdJDWKju3sIgVzKuA+SSZVwI0SzKpobKhVMK2isbFWfl5FQ41HZS0fS0ExJPMrE3IAN1eU9XR4BeWhZ1i0w8CRD6ag7pJBFqHurqLjK9SuVPwwi7YYWPORFiRLwiFm/c4K0NhpcYJ4iDWVmBmXf8lYJ8wF2hlCM7jKRUkID3Pf9Ui8a8Wk9fzMNCitV7S/g+aQlafHpsE98/y3E1CV+dlpVGVHe7eAfQ2IHp/WHgMHUeI4ZxqeH5xGFZCkpNiuBUlKih21IEhJsT5rEKSkWJsu4IZnyDXjhqdJMh7tHEnGo50lyYKvuGLdUGKsxZNr5u8EgmuOuBGmWfKk54iEDVYkmjBCRaKJrFOTaCLrNCRaMFiNogU3JkCPF3lLNFi/693Uy0fPLjATzbm7xeUJCqt3j41YlPv1uLbxb7+12+M+F6tVcXlyxOfz8xx+vTw5YnzdX7nrL6Ycx3o36eDd+E+Fl5d/AAWdq1E= |
用于中期游戏(蓝瓶科技)的铁板工厂。
产能: 675/min
尺寸: 32 x 16
输入:
1 |
0eNqlnN1u4lYUhV/F8lUrQerzfw4PUGkuKo3U3k2iisAJtURsZJtq0ijvXgMdJip2s9buRRSF4I/jdbx/vfFr+bg/5kNXN0O5ei23ud909WGo26ZclZ+6tikO+/WQi6f1Zmi7l+Kp7Yrnelvs1s+5+OF0bNFv6txs8o93981987lrt8fN6fhV4YP76bkeX/y1/iuvCqOLr4Xyp3d9ag7HYXXfFMviy2/t4aE4f1Lb5W/HlIuyb9aH5dAud129PS3ta7lSflG+nH69Lcr1Y9/uj0Nent53qJtduRq6Y16U9aZt+nL15bXs612z3p+OHV4OeTyfesjPI7kZ1376a/zM5fnsypFXN9t8+oi3h0WZm6Ee6nyhnP94+b05Pj/mbnzD9fj+sK+HYXxtUR7avr5odl5nvCzzzo3cbd3lzeV/9m1xg9NX3NCtm/7QdsPyMe+HW2i4c2dshWANjFX/YA2CtVfs07oflnXT525SAT1H1RNUd6Xm/fi+rt4sn45ds97kW7B9B55AeVpO6LwDjdUINqJyekbOxFI1QlUVrEFkpFWK5kLaKo3KkOawfgprWKyBsJawAaX+2wiUQ9eoDLVI3LqUpa6BQLsrB3EjzbUQNwk8lp/eLF3RvgU6d61oLnTuWtP2iq3X0FxsvSLLmtssx1sAtkqBaWGy8qYVIC5vWh7iJjbF8Ej0MryVQTIY3sogGYxmg3iAZDAsFlPX0raLqetoLqauZ4O4R+KjCSw2QNhIh3NsuYn3OZC8tuLB0PVgFe10EsTVNDdCXMM6s4SYm7WC9CNNRzT73cSOYwXc7bp2/P2BC7sVdXEtsU+VfTn1QXxphmkcWJeGaUzXZhHCJkLu+D/kdny5BsntFOvjIuKLHF2tJQhrJMnfjKk4S/thbJGCpBLbK0FSCflLxyeVCuqGOT6rVFA/zEkqNqVnmkzfbas/PvbD+nzsXBdQjatrcr3747E9dqeWojLhYYqqJNfq7Bo1v/fYHnkjIEOb5C2/+1B/wTseDDWZvGcDvIKabZ5vOIJKREG4n9DiGoDa4zATgTzdh8S0CRXNhdqmgW9EYpoHLYj5Ms0D3Z1UUOcvWJoLdVMD36kEwYLQh5l8CAIydp0Igh/UAwqJB0Ndq1jR7s8hphiVJFq76UgY+VtsmKzR8GBMVkt7OAvJ6mgutl2e95yYwoEHYwpH2p85xO3ERHMtwk2VKDecsYikeK8LnX6SJJ3QhiVJ0gldY0mQdELNqiRIOqH2WvIS7xhnrgVBpomdfuTB2Okn3ilAK1YV3zPBlqwqWW03s2eqktgZuFKJoYHyCiwtYWSBqUWMzBd4EZumENgdKIbA8EAx+IoOE0PxJV3CwIKaDlNZ8bfBQZX5CRMFtRmV4ou4iIEFVRxIlpRxoMySOg68NvhCTiuMzFdyusKmpehS7nbJkyaoJbXcmT1J04L+1YS4H99AUZov71Ct6fruFjytNV3goZvoBS0soex8zYfKThd9t2cw6aU0XfXdrnh61lBU9s0aj+HrPlABI0hIwV0zgoQU9KaGT0g1Ns9o+IRUY1OtRlL8aTt3RQTiTpY2/76T5auHSWoUXbazixTMqYD7JJlUATdKMKuisaFWwbSKxsZa+XkVDTUelbV8LAXFkMyvTMgB3FxR1tPhFZSHnmHRDgNHPpiCuksGWYS6u4qOr1C7UvHDLNpiYM1HWpAsCYeY9TsrQGNXixPEQ6ypxMy4fCNjnTAXaGcIzeAqFyUhPMx91yPxrhWT1vMz06C0XtH+DppDVp4emwb3zPPfTkBV5menUZUd7d0C9jUgenxaewwcRInjnGl4fnAaVUCSkmK7FiQpKXapBUFKivVZgyAlxdp0ATc8Q64ZNzxNkvFo50gyHu0sSRZ8xRXrhhJjLZ5cM38nEFxzxI0wzZInPUckbLAi0YQRKhJNZJ2aRBNZpyHRgsFqFC24MQF6vMhbosH6Xe+mXj56doGZaM49LC4PUFi9e2TEotyvx7WNr/3Sbo/7XKxWl2c5fD4/NeLny1Mjxrf9mbv+YslxLHeTDt6NPyq8vf0NO3SpWw== |
用于中期游戏(蓝瓶科技)的铜板工厂。
产能: 675/min
尺寸: 32 x 16
输入:
1 |
0eNqlnF1r40YUhv+K0FULdqr5nvFtodCLwkJ7twnFsSepwJGEJJdNQ/57ZXuTXdZS931PL5aQrP149M6cTx3rpbw/HHPX181Ybl7KfR52fd2NdduUm/LntutyX3SH7ZiLh+1ubPvn4qHti6d6Xzxun3Lxw+ndxbCrc7PLP97cNrfNh77dH3cnwqbwwf30VE9//L3+J28Ko4tPhfKnV/3adMdxc9sU6+LjH213V3z+rLbPb+8qV+XQbLv12K4f+3p/Wt6ncqP8qnw+/Xhdldv7oT0cx7w+va6rm8dyM/bHvCrrXdsM5ebjSznUj832cHrv+Nzl6ZrqMT9N5GZa/fTb7vyp6/MVlhOxbvb59CGvd6syN2M91vnCOf/y/GdzfLrP/fSCd8LQHepxnP62Krt2qC/KnVcaLwu9cRN3X/d5d/k/+7q6wul33Nhvm6Fr+3F9nw/jNTTcuDO2QrAGxqrPWINg7Tv2YTuM67oZcj+rgF6i6hmqe6fmw/S6vt6tH459s93la7D9CjyD8rSc0HUHGqsRbETl9IyciaVqhKoqWIPISKsUzYW0VRqVIS1h/RzWsFgDYS1hA0r9txEoh65RGWqRuHUpS52BQLsrB3EjzbUQNwk8lp/fLF3RvgW6dq1oLnTtWtP2iq3X0FxsvSLLWtosx1sAtkqBaWGy8qYVIC5vWh7iJjbF8Ej0MryVQTIY3sogGYxmg3iAZDAsFlPX0raLqetoLqauZ4O4R+KjCSw2QNhIh3NsuYn3OZC8tuLB0HmwinY6CeJqmhshrmGdWULMzVpB+pHmI5r9YmLHqQLuH/t2+vkdF3Yt6uq9yD5V9+XcB/GlGaZxYF0apjFdm0UImwi54/+Q2/HlGiS3U6yPi4gvcnS1liCskSR/C6biLO2HsUUKkkpsrwRJJeQvHZ9UKqgb5visUkH9MCep2JReaDJ9sa3heD+M2/N7l7qAalpdk+vHv+7bY39qKSoT7uaoSnJWF9eo+b3H9sgbARnaJG/53Yf6C97xYKjJ5D0b4BXUbPN8wxFUIgrC/YwW7wGoPY4LEcjTfUhMm1DRXKhtGvhGJKZ50IKYL9M80N1JBXX+gqW5UDc18J1KECwIfZjJhyAgY+dEEPygHlBIPBjqWsWKdn8OMcWoJNHazUfCyN9iw2SNhgdjslraw1lIVkdzse3yvOfEFA48GFM40v7MIW4nJpprEW6qRLnhgkUkxXtd6PKTJOmENixJkk7ojCVB0gk1q5Ig6YTaa8lLvGNcOAuCTBO7/MiDsctPvFOAVqwqvmeCLVlVstpuYc9UJbEzcKUSQwPlFVhawsgCU4sYmS/wIjZNIbA7UAyB4YFi8BUdJobiS7qEgQU1Haay4m+DgyrzEyYKajMqxRdxEQMLqjiQLCnjQJkldRx4NvhCTiuMzFdyusKmpehS7nrJsyaoJbXcmT1L04L+1Yy437+BojRf3qFa0/XdNXhea7rAQzfRC1pYQtn5mg+VnS76rq9g1ktpuuq7XvH8rKGo7Fs0HsPXfaACRpCQgrtmBAkp6E0Nn5BqbJ7R8AmpxqZajaT403bpRATiTpY2397J8tXdLDWKju3iIgVzKuA+SSZVwI0SzKpobKhVMK2isbFWfl5FQ41HZS0fS0ExJPMrM3IAN1eU9XR4BeWhZ1i0w8CRD6ag7pJBFqHurqLjK9SuVPwwi7YYWPORFiRLwiFm/c4K0NhpcYJ4iDWVmBmXNzLWCXOBdobQDK5yURLCw9J3PRLvWjFpPT8zDUrrFe3voDlk5emxaXDPPP/tBFRlfnYaVdnR3i1gXwOix6e1x8BBlDgumYbnB6dRBSQpKbZrQZKSYkctCFJSrM8aBCkp1qYLuOEZcs244WmSjEc7R5LxaGdJsuArrlg3lBhr8eSa+TuB4JojboRpkTzrOSJhgxWJJoxQkWgi69Qkmsg6DYkWDFajaMGNCdDjRd4SDdbv+mrq5XvPLjAzzbm71eURCpuvHhyxKg/baW3T335r98dDLjabt+c5fDg/O+KXy7Mjphf+nfvhYstxKniTDt5N/1R4ff0XW7Ssnw== |
用于中期游戏(蓝瓶科技)的石砖工厂。
产能: 675/min
尺寸: 32 x 16
输入:
1 |
0eNqlnMlu40YQhl+F4CkBpAm7m73pmEOAHAIEmNzGRqClrRCRSYFLMI7hdw8lOR7NiIz/v3IYGGNLn4pVXStLfM43hyEd26ru89Vzvkvdtq2OfdXU+Sr/2Dd1yjZttf0ze1hv+6Z9yh6aNnusdtl+/Ziy705vzrptlept+v7DXX1X/9o2u2F7Aqwy5+0Pj9X4y4/V32mVGZ19zpQ7vern+jj0q7s6W2affmuO99nlo5Sxxekd+SLv6vVx2TfLfVvtTpJ9zlfKLfKn04+XRb7edM1h6NPy9LpjVe/zVd8OaZFX26bu8tWn57yr9vX6cHpv/3RM4+VUfXocyfUo+fi/7vSJy/PF5SOwqnfp9Bkv94s81X3VV+mCOf/n6fd6eNykdnzBG+Bh3fXL7nio+n78wyI/Nl11UdxZ2nAR9oMd4buqTdvL38qXxQ1Tf83s23XdHZu2X27Sob8l+w/2zC4Qtnljv4dVr1iDYMs3bDqMrxu1uHwY2nq9Tbfg8go8gbJfX31Vd6md1KieE1BPUB1Kda9UjVA9S4VkDbCN/JywUzaKNBYyvSpQJcQ5rJvCKharIayGtRAY5SpDczHtMp6l1H+7loJ9SxnKVg6PKiV19Z4OVyXEDTTXQtwoiINu2li6oP0VunataC507Zr3LExe3rMweUWeNWcsy3sAJqXAtTC18q7lIC7vWh7iRrYucEiuNQWbwjGsYrEewmradyGjGUNzIaOZkk3iHsk3xrJYB2EdHWkw7Xqai2k30Okc00PkYw4kcFnwYEjDpaKDToC4muZGiGsEdUKcTj1lyQbGiISa0rIRLEBYuhHDpPV0AMMOwBcXG+pdavdtM/58h3x7BBZvM4fToCOf+qDIhrSIuLKlm7MAYRUd0SB1W02oO/wPdVsjKf5mPNCWdBzGjCcoKqHwYwVFJWY/vqhU0NjK8lWlgmZtVtKxKT19ENwXb+uGTdevz++dGwWqUbo6Vfs/Ns3QnoaLyvj7KaqSnNVZGTVve8xGzgjIkJFcyVsfmto4y4OhwYVzbFJW0MDR0RNHhY1HA83F5I2C/Dlhu7eI3gz9TEj3/LwEs6WnJ5EKGkV6TXOhaZw3giQq1HlJ1wGgzvlJJah0QeoDRfYCMhSlvCD5QTMgH3kwNLUKhSSr2umMFRQdSy10m0XTMQ/jGppbQtySD3DQMQiWB2PHwNERrkScOHiaayFu4MMZpuHIgyENx0JUG854WlR81IUUGyVFJ6YASdEJ2SwKik5oWBUFRSc0XotOEnXDzFngJyrg5fO3t8HLFziZw+5wFzzZY2RZbzdjM1VI/AyUVOJooHoFnhYwssDVIkbmGzxoPqoKvsOLGJhv8UCJ+cUS0HxK0NJh5uO3S1TAtlb4pi5iYP42OKplQRMHalnQxYFqlrRxoNCSPg7UNN/I6QIj852chkZvSktauTN7kkb3crdiTgYhTTdzKJju5m5NNg3m2znwMFwto+BDt4nj8P5tFKXpDu/2GqbX9OgW7/YCpsF8j4eqPQrmbjK1G1HbN+uVhu/7QG0bQUEKBiYjKEhBSxq+INXglihfkGpsU9JImj9dzp0IT9zJ0ubbO1muuJ+kBtGxnRVSsKcC2kmyqQIaSrCrorGlVsG2isbWWktDp21opKnw5RU3K/E0mF5fQSV2kuRaSu6uKMFWC2rQQKdXaDKr+D0WDU0Q1dUmC5FdZXoXrLeAereaz7SY4q0kHYJClwI0FrKsIB9iQyVmx+VfMjYJu1pyITKtn/tKRqBDK7QqrGykIyAGdvTKtHYYmP9mAngYHL83DR4GZ+h457Cv1NCr09pjYMsHN1DL/P40qmUvKhznfM7xi9OociUlKaYDLylJMcN5QUmKTby8oCTFxtkez3eaJOPpzpBk3PVKkoy7niXJeA3qSLLge67YCJfYa4mz5En/DvydQFDmQPigIoUmnLAg0UTVaUg0UXVqEi1YrAYDXhDcmEClvprJvPOYAYPNuQLvgWZiOHe/uDxLYXX18IhFfliPpPF3vzS74ZCy1er1oQ4/np8f8dPl+RHj6/5KbXcJEmFseKP2zo7/lH95+QdO9q11 |
科研瓶工厂用于生产研究用的瓶子。科研中心模块则消耗瓶子用于研究。
用于早期游戏(绿瓶科技)的绿瓶工厂
产能: 135/min
尺寸: 32 x 32
输入:
1 |
0eNqlXU1vG8kR/SsETwlAOtPV3zpmEQR7CBBgc1sbC4oay4OlhgQ5TNYx/N8zQ9qi5HSL7xUvFixSb6qqu7qr6lX3fJnfb47tbt/1w/zuy/yhPaz33W7otv38bv7X8aPZYd21/bqdfVyth+3+8+zjdj976h5mj6undvan+xdf+fO79/37/p/77cNxPSHczYz1f3nqxl/+0v23vZtZmf0x/jN96+d+dxzu3vez5ezXf213H2Y/77f9bLdZDe0sNPHdt797/vhvm3Y9jF/p1rOfuv362A3fweeL+aFf7ZbDdvm47x4mLf6Y35mwmH+efnxdzFf3h+3mOLTL6Xu7rn+c3w37Y7uYd+ttf5jf/fplfuge+9Vm+tvh864dVe+G9mlE7kclx/9tto/dYejWy2+aLner9e/zEbrrH9rpaV8/LOZtP3RD154BT//5/Ft/fLpv9+MXnqGG/ao/7Lb7YXnfbobxEbvtoTvb+yz4O3+W/J0f8R+6fbs+f+q+Lv4PVmBYW4MNBVgLwwoD62BYx8B6GNYzsAGGjQxshGEDA5tg2MzAZhg2MbCmwf2hoYAJRzMUMO5qhnIKgzuboZzY4O5mKH8zuMMZyuNM4IEbZJk0uNOZqjNLCRh3OxMo4MwDQ6YQwvMyI7EQnpcoYNzzxFDAxDbXUMCO3u0tNHaexhUI9+J3H1eHYdn1h3Y/jJ9Uo4gJtgR08bPV4dA+3W/GYGv5tFp/6vp2aep47iTmKGR3Dr7GQG/52K72y/98atvNvPSoi+c9tQ/d8WnZniLEMUbbbTdtPaQ4W6Rvu8dP99vjforWrF0Y5z+UnpJJhYJaIduggxDeHgRrUKB8BUhI5bNeeUuO5nNUUBjOcWrYuDBNszC+KY2qdaRizzu6QjOPjsbzQ2rDEVipa5Pxuwilh0R2IMKbfuVG12r8woxLjPFFF7MXR37DNvGKbTICcmW+u4Y1cOYN7Az5EBHFQwQwh5gr5mB9UuSNqRAXKS/MGJOaUPRJx/qk+LJdftgZS4/y7KOS+lGB3rE9smO7SOM6CDfRuBGJiFymcQMir2+AiW5fIJYwDF1EgXT2QldRMFxL1zswXL48g+F6upCC4Qa6koLhRmBOhStzii/HYLLx9RgINyB+lN/WOShKL5hwwheLMGBF6QUDdnyxCAP2SJwjVwYqvKhrjzvfp1X/0D68FZn6K4CRr9tg6ia+hIUBZybohLaiiLiQCRSk4ctWkPpR+OoSBmyZOBwzgkMgEwXp+RoYpn7ga2AYcGQCeswIiS+rYbJmcnl5Lq5VlpfU8HU6SNJkWEmvhJIJyruEGaZEFCmprSThe5RQm1/CvUuqu0HRFHCZUq5sWOniTsdxyPeP++34syZkfWdZPLPFE5tdSgBTgmV21LTIbHL+eud5lZxPRZqpQBOKBZpMuF9kxjPDhUqJb49nFhiJ2iiyZeZJuj5PtsehMlEyzxmkijF4liBDxgh0PpshijnS+TeGm+h8FsPNdP6dMU68IX06vJgIBUpjqruWaQ3TGDp3BnUQOtkHgS2d+YLAjk7VQWDPltJNfTynyTGRGlMBtUxqmCbwaTKoSeQzexA58YkyiJz53B5DZnpX/KsRvcb5M80rjpNZeJlBZGaLNKFqj+uhlHnR0AI6VKw71GtiaiESik7F9LpwKyXT7MItlYaJbp/z0KSJWgzTAJM5Z8h8Lo3ZR9MCAyIbJl40tzgD0xXTUIbXtMWA5nF8yQFE9ozh7U1T/kW3DMmLFpahb6SojcXVRyKf/IMGS3z2DyLjfivcJmYbvrAAIhseGXMmK7w1QGTCTbmdyTo+4QeRPY8MWiPw1gCRCR/k9iFL+GBmMnVjM4+cIGTX8NbA7OwURyQMJrPwyFhbsbNE+wGK6ZQ9lEZed6fUzqwUHslmqv61Sj92331rvVuIKQfVLii7Km9QkSH10ZFKBGmOYmZlz6XeNL7R1ilKwz9Npu/Fp1NeZYpTwBttC+YNigpDnoMD5iHG05OgdIOqv906XptdF6eBv9SrwrgS2Mo0oHta0+2KRoZQRkcsMQQtCsouBpcHqK0T2NVA7JvTwJ9agMOpwjJOg/KGEOimWHe7ohBX67gRC8hqIJEEpVtj4+3WYVcDSW9Ng3FWjZlubRUIgQ9XwdiPaE0ScqsOfK+ssRgy3y1rBDsH1yjMgQlNNCtJJqVWBPAeQ7Y8ssOQHZMagJieP+7toVSUaFxyJHLkT2eDyIkJ6UELZ/50NiYt0cQUSWTDpCGYHZLw575BaS1/UB1Edooz5SC0V5wqB6EDlZSAwxcVh9VBeZPiuDoInalUCjMF0b1kyKUtG8U5eBBa0aCLQlvFWXgQmmrVRQfQK86Vg/IGxVl4EJpq2EVNkRQH1kF5s+KQPQQtTcOTWCi04VksFJpLDx1294Ll2SBUXsdTWCi0p5Ja0BQKwgaVN/IsEwp98cDDbtMN5ai+oQyReUYFlNZosj0Qmjg02VA5mRhFthcxZEW2FzBkKturdDGL8VrqJynrPGKClvoJ5dq/iFlIuUNRTNTyPnr9qCSxOjCZSbFqKNJouR21+i8aklhuJ5SL+tOMOZVyfS6OsYia2NFraakcqjo+jso/qjBeTd7oLRDU5E1hnKdpM5VsJ/ZG7OjPIZXHOqrZG72micoxqoOUqfi8BmMbNUOjtoA1aoamONangz9nstaOfh2LrWhCXwZ0CWD1mloqBq8OkqPi1yqMV9MwegsENQ1TGmt79mtJ5cuuiFanS1CHhV5Er9MFGou9rIItgdqohGh2+sGtryJrwmdQaFFAg1Lz8bNg19g6/vSbYNcdOk+fWhPoskoh7vaxJHIksomTHYooiWZeUPkyzRaByHQvkn89G14vd+YUpi7smARYKW9rxOU/kVRFaCoJRbZETlOdHp4/94bK52nyCEUORB5W11xxnA0VMPEcFAqdtalc0TemVE5Oof3ClrtyJDQ81QMqw9wVRC7Lgeryq04S5m4gcvkMiouZUWjPpLB15RVn01AJI89sodBJmwSXPSSfCx0xVncPplGHXESJTh1DrqLRMCl0dZJExb3MqISKI2gotKOuxqwq73nmCZUw8HwZCh21pYOih4wOdyoPJV/dQ5hbhshlNCoOmoHQqWEKD9VJkgxPRKESCk+fodBUD2tdecfzWqiE6ubU4jS23xb5yhXgKfAJNZj2JkXBBcx7E9+dKtgl9Imvtwh2DX1ulPyXOG2BLRsm1QbVECXNdYMaVEoIquGUdNUNangmvwPVCFpC6gY9IpWDgIokLa90gyJUSx6miG0aLW2kVsQ2XMwLKiJa9ucGRSwVv4KKOC25c4MinoqxQEWClqO5QZFIxUugIgq+BNu/LdFwdIHGpDY8YSIeQ+ZPh4vDkBV8CSq0VUCDUisIk4ghK14yFDBkBWESodcVGoowAaVNWioiFMutxXefGP4uQdAkxCVHjkRWUCYgsoIyAZGp+BibIKIgUEBpFQQKiEwRKKAdopqYCBViok5KWOLiImNI42QFeYNBWw2VAkJrqBQQmqNSsOliNcQKKK+GWAGhOWIFNIW6a6/kOZMjnkiLei3LWsWLMFELKV6FiUJraBYM2mloFhCaSzmxKeM0pAsor4Z0AaE50gU0hVeTGSXvmarAE5FReUsd0e0j5AruFLf8odAa+gWE1tAvGLTn6BdsungNGQPKqyFjQGiOjAFN4fhzQai8emqm5JSVbYx49ZeQq7bXUDIgtKamA46ogpPJyLV8NihKOlA3qQ38e/dQmfk376HI/Lv3UGT+7XsoMv/+PRSZfwMfihz53BpETnxuDSJnRWaKQTPNQA0JbRSZKQgtiswUhNYkkVD/vI2aJBKU2vNSW4NJHRTQhU6CD4t5N7RPI8z95tju9l0/IWxWI9T4u39sH46bdnZ3N/v7vm372S9nbmT8xr/b/eGseDIuZolJcmxS/vr1f/YDLSg= |
用于中期游戏(蓝瓶科技)的蓝瓶工厂。
产能: 56/min
尺寸: 32 x 32
输入:
1 |
0eNqlXU1vG8kV/CsETwkgOtOvP0e37CHAHgIs4AA57BoBRY3lQaghwY/NOob/e4aWTNHSdFRVOtiGRapYfN2vu/p1dc+X+c362G13/XCYX3+Z33b71a7fHvrNML+e/zS+NNuv+m5YdbOPy9Vhs/s8+7jZze7729nd8r6b/enm4i1/fvfb8Nvwy25ze1ydEK5nMf3lvh9/9r7/b3c98zb7Y/zr9Kafh+3xcP3bMFvMfv3HZvth9v7QdevZdr08dOffOr/4824zPL5mFp69+Nfb35fjh9/OVv1udewPs/L8Hf8cf3E3C9Y8+/kv3WG3WXfH+/G77L+/Pr+a74fldnHYLO52/e0pKH/Mr126mn8+/fP1ar682W/Wx0O3OL1v2w938+vD7thdzfvVZtjPr3/9Mt/3d8Nyffrdw+dtN0ayP3T3I/Iwxmz83+pTd9+vluvFY+AW2+Xq3/MRuh9uu9Onff1wNe+GQ3/ouwfAb//5/K/heH/T7cY3nKEOu+Ww3252h8VNtz6MH7Hd7PuH5nsg7t/FB+rv4vgBt/2uWz28HL5evcA1HrdBcD2OG2t8bQI38LgQ34jjBgY38bhQu+Uz7sfl/rDYb9f9YezzE7DpEdZeD27ByWam0Voct2VwXYMDFwoYTzdzFDCeb9ZQwE8Jt+233cNgtjkOtxPAdtGBp6DwHDNPccST7MwRA074lw+vfPmMc6QGLocnlwUKGM8uo7LW8OyyRAET2UWNB0ZkFzUeGD6d+YaafvFc+55q9hw3TeESqVbDneSbaFwP4eJpF6g44FkXKVw86RKD6/GcyxSuo3GhdvN4xhWKL55wLYX7lG/L/b67v1mPan5xv1x96oduYRO64Xs6h2/wI3j/IO/HBcrirlvuFv/5NK5j5lOfFX/UaP2w73aTGq3UQj41FnlCUjZUbPAcdI4CJnSlUcAtv3qBgEPDA0P5Ehy/HvAQY+OBoRE/ECu5RIUi8KsNLBSRB8ZCkfjlBpTSIfMLJAy48MsNDPgp80aZ3e0e5PZrS6SX0FfncsmpPDQ1isbmZRFlu14O/2818mys3h/XH4+7SXDHr5qgrhKNiU98PT6b46EWIM8vfrDvEHj9D3WeGPkVCwaceP2PAWd+xQINgrHwCwsMuOWBoV6RGnoFECFcR+MGCPcpE/fHm/1h+e2tL1X6N8RTsXfo+rtPN5vj7lSHdaN28WYfpoA9LamxQAQaNyB9OEVaqmN8E42LNVzmNRhGuKC63BkVYEGNQpHIDS9oIMbZ8cBxum6WL9Ls9Vp0Arh5YgY9A7+M5+sKIwde1kEdLUde1kVE4WZBiIZKu2VeIWIcBemJZUOLpu9Zd0LJUBoYN9ZwpwJRHC+jIkTYeBmFAXueMdR0JfAyCupsJfLCD0rhknjGWCgyr88wxoKixBgT09sjbkZwWzjvfA12qku0vJ7E6BqNmyBcT1Ymvw9C5cfFbjfcnX7hOPSTk13Lq0ssLJHGxcKS2CJqhnaks1oHzj+G+7TknoxzoVVxgrp1S4vXjG2lCyVPqGe4RvCuJAzZeDdIwqIh+FdyZUe5EQqd4PcXKp1gmyVFfee6+q7Xr1zD5uJZLz4b+momq4mPxJeAhZl0XNPyyhzKe+dweWoUZcbrwiX+hdkFbNj01oa9sMG8FqVADY8XppjXgAsHHHmFCYZfqIZio6MTyqHYiOYE9QpGQyiIYpwJn8x3YdxiwI4GLhjwU2KuN2NKflqOY/wtoLxbzOPmaYkMBiSIvAvGmzfNgPGGRWzmAp1p0Q1GglevYAu2NDAWYsI44y5XTpNYjsdqa1jGSzQslIRFxmUuloHf8gc5Rx4Z5JzIocFVO+6kSrowx5D4BcMv0DbVaWg9eQub5xtVya68zx8moam9+uqQCVTS3YVvBouSFWrAu7DPkPjYuEe4aM7CBuv5hI3mjIz1fMJHcxY2IOfII4OcE61snMOQM4/cYMhFFB8Os3GHllYfYEwiXWF9GZLJQSvyNVYw2NHEauhjSNByqIuelWZgc0Z4wdhWgaeDzu/jo/2E38lHm5Mutzq1PdksdZ4MP16ArWfT9CGWRjgr5iq6MwlGU1c7E5OEOmsdTDkaWP2aQm0VzIYkFFfBdCAsM2cZjLLOAjTIuqgSGEytCwMNWQh+PkrgBcPc0JVgcHK8MNcQsnuimZEaepZLrW8InVfFODiFZr7mCg61WSi6ggmYBccAmIBZ8AygrIW6K8qa9w04yOLqCl94dYYhO1oxQ0cTXOHdA2gwvLo8Mez4auCZg8GOqtYPnDYsgr4Fg595ZDA4RVbObHRaWTlDZ6ocbvRx9ayaPgGtiF2rSMpWOEn1jeckmCJ2q8yEyy/qzBR5i2VDmwRoLB1aRd6CrIsADbLWhW0Q1Zk1grCF5jBrnLwOwM5WE7Ye81QjW+NpFwUaFeXWDOzMfRN50mCkk7xs0Dtmpi0a2DRguKvHAiV+rGn5lQjG2ck7JiB1p1y2gSWTE3ZLwC7vlAs3QNbCfgnKOvILkoghCxsmAUPO6rohYv2v8OsGMCatyjxgl8nwJx3BmJujNx1AykZvOkBnWIyw9BSuFYkbcAoZ5SgvaCIWlCR/ABj1LCxFKgf0jPD0PIGFGlgrLEVqYIp3p/o1vXCmEeyqipcH7KteuGUDZS24eVDWUV4JYBmmu3rADCPuvDFPxr0I0GDcW1k0YpO27uMBJ6qgqFIs7oqHB4x7UFQpyFpRpSBrQZVmDFlQpQlDzrz2AjnLNp6M9WzBxoPFRLDxJOyuQKcW4DNVYrZotO7Fgo67eNoq8HRoBHWK9UPFxgP2kyRvGbDtmWUBDIa/8FsGCesxioBNFc0pOXdyDUzZzKgyU5w7VWaC4xzMBsnHg6VDEjznKGvFxwOylv3mYGqlIu9JZLX0m1p+TwKbwogrcsxzjZyF85FgI7/BtSO3wRtcO9hcrLh2sDFbcu2Ajay4dsBGVlw7IGvFtQOyFlw70KkCU1w7BUPmXTstdom04NoBg8EflUSDoZ6VdNBRGZNdO9ZwIlNx7YDBF1w7YPBl1w4dHd21U7CLzgXXDnSYyyTXTuXMprWK0G1rYF5gVgVTXDvVr6m4drBskFw7WDpIrh2QteLaAVnLrp3nSQyrM6+4dlrswQK6a6dgH6C4dqBG9oprB4yK4topGGnBtQNGWnbtvKFjCq4daBrwimunYMiCawfj/AbXDkZdcu1gySS5drAuL7l2QNbK/gjImt8fMYch8/sjhj1dT3btmMP6H+/aQWOiunYMOtrjBdcOGHPetYNSxq4obx8wDb/6wRu9L2LQ4TZ/4dp5/XBbqcf59TslvG7jMYd9F9nGgwYr8ysAq5x49YqNpw4m7IJY5WCv98IuSB1MsPGAI5Bi4wGHCMXGg7IWbDwoa9nGA2aYbuMBM+zCxgPcnvNyCD0Nwc6XyTH0wsdDnOPVxjrd2APO67qxB5zLFGMPmAGKsQfMAMXYg7IWhCvKWhCu2FP9BGOPGYYsC1fs4XhBEK5gTFp2d8Gwh9hFQbFiwZaNPY8hQavQnjf2gM3JG3vMY0GXBKxXLmfwMcq7AWw76FIWDFumdwPMsJYughStHG71jLsnvAaWBHu6WQ1M2PSogylKFhvtFK8POColRcmCrAWvD8pa17BYaiX5GvTnowRe1U38PejgpJakSyfFAfbC/cMWxOXQZfkqSnDqy0ZXr8GhNgt3UYIJmIUn/IAJmIXbKFHWSYAGWfP3UVrEkAuPHDBkXulG7DnQgtLFglGcuqyAzqt4wQEEBruoz/2xxGnDwlvZ0eDzVnY0OLKVnY6OIGwj1nXkGyktYFmliN3K8UnfKmK3CiZcpG6hBqY84bwKphRqsWxoFXmLpYPi/kFZC+4flLUubJOqzlpB2GJzWNvK6wAonUMjWNmxRg6NYGXHGjk0Rrtd0Hh4Wdyr3Sc0gfakYEIiEK6gQs0zoUnyggSkLjz1B+2YRYAGO6byIHSMtWsEaIy14x/9YxlDNh45YcjqDZQGHSwJjr+BEo1JVJknjHnimYMxz3ThHaTMPwEIDXZLl/ShM2CBcP4ULsrmZAmfMeomfwAYG8HRbpVzoMEER3sdLArMUg0sCcyqYIJrHe1QgmsdTC/G0pM51ozBJ3OsvexOBzPMm/wBWIYR1h/zZHACr63BqESBNNhZEi+hMR1AP4rLCvkBRf4AbHL1rSB3sb4SGgEaa1HC2vMkd0HWJkCDrD2vd1sMOfDIBUPmH0Rp0MGFQBh7PInM39iDRgOfLAPJGc/DyCETnp5EIjv6mZ8osvH6GUTGc7AlkYkcbEhoQpg6EpqQqWSCR0K0khkeFed55VRsUO7fqYIp9+9YqYEpmxZVMOFQJDgsJkVwYjPbhUOHLbm2ask1CZd7oF9Hr4ximZGUyijYyoWvFxeMtFIYxQKelcIoFo/MF0Y95FwPmd/iR5E9LbpQ5EBLIxQ50tIIRU60NEKR+ceho8h8NRRFbmlpBCIz9+w0JLTjpREKbbw0QqE9L41Q6MALEBQ68nLEV07VhSJcWOehcy6hCNVS32DQha87eujgWGC8M4WDZpw0LQlN7OM3JDQxCzoSmhCsRkIL13ig0JGuY4KZ3Qp3zoEZ08olUpS7cPPcFPcPV/P+0N2PMDfrY7fd9cMJYb0cocaf/X1ze1x3s+vr2U/jq7P3D2uI2d+Wq8Nm93l84+/dbv9AsrhxKrWc4vjH5a9f/wcmwSR5 |
用于中期游戏(蓝瓶科技)的紫瓶工厂。
产能: 90/min
尺寸: 32 x 32
输入:
1 |
0eNqtXU1vG8kR/SsETwkgeae/u3XLJcAeAhhwbmsjoKixPFiKJIZDYxXD/z1DyRIpadp87zmHXX9RjzXVVdVVXa9rvs2vV/t223frYX71bX7T7pZ9tx26zXp+NX+/77erdrZbdu162c4+L5bDpr+ffd70s7vuZna7uGtnfzv8/NNH/v7u4/rj+n2/udkvDxhXs9L8dteNf/eh+297NXN29tf4v8OHfl9v98PVx/XscvbHvzfbT7Pf+816tl0thnZmbXj8qed//DBs1u3Mh+bN37ft6sdPpYl/PfzUdd8t/5y55vW//uPm62KU+Wa27Prlvhtm5g3A05N87Yb72d34+1EbZoQ6fGx+Md+tF9vLYXN523c3B+39Nb8y8WJ+f/jl+8V8cb3brPZDe3n43LZb386vhn7fXsy75Wa9m1/98W2+627Xi9XhZ4f7bTuqvBvauxF5Pap2/NP2WZOXPzR8uV0s/5yP4N36pj183/dPF/N2PXRD1z5CPvzh/j/r/d11248feAYb+sV6t930w+V1uxrGL9ludt3jSj+IHt+FR9nfhRH/puvb5eO/+u8Xb2AtDJtqsHEC1sGwmYH1MGxhYAMMaxoGN+K4hsFNOK5lcDOO6xjcwuM2iPGaBgcOjFcY3NuMp4AtLzGmCsdLjAHjPmcSpYrAA2MSE25HxUqTeGBMYsLxMiVx4YEhie3R8xa7XXt3vRq3xcu7xfJLt24v7Vv4pzjkHtBH7O5xm+wPW+LQPeyFb7/l6IarzYj/ZTFuljeX3XrX9sP4gTffEl58y5moZK2IbiF0R6L7mux2Ct2L6BZCD3RW4CCriTSuhXATnRxh8mYaF5O30HkMJK9r6LQLwzU0LqQHZ2k9QL7nHJ/QQSHDeT6jw4CFFBRThZCDYsBCEoqpQshCMeDCSwypwje8xBiwkIZCqvBCGooBOx4YChXe86rAdCykoVDQ9JEHxlQhpKGYxJkHxiQW0lBI4tDwwJDEwYj5bWTy26BmoAE61VAz0IDkiMGLsntI9iDK7iHZ+Tw0QFaTaFwP4fJ5KCZvoXEheePRLXfbVTdMrtjh8AYGNHSiCCkgWjqxxXD5809MD0L+iQks5J9QmIiRz40wiYX8E9Nx5oGheByFY1AoWKaGz40giZPhszkM2PISY6oQ8k8M2PO5EaYKIf/EgIVjUEwViZcY8rwkHINCsSIJ+SckcT7Z6PbXu2Hx8NG3yaF7lHUEXLfd7Zfrzb4/NPmKu3Cu+TQFrJ58JqjPo+adEUJX886EbChZPfmMEDp/8pkgQ+Ezzgjh8iefmLx8xonJW+jECJK3NHSCCNlD4U8+IT2UowfuR/vtb/vN+Ou5VO4t9MUz3+BAw5iqMYuDQtShMTl+Q34dosYI54KZClHF8ykjtpZCLoopXchFMYkTD4xJnPl0BoqipfAJGARsGiEZjVizX8hGoQ3LNJbPaBIms+OTMFDPQkIKakPISEHkowN+XuyGy7PwVKw2TRLhDxqfBMwkYOaWUEhLMUUbuj3/tMXkl+eXdeLaxJcaTlvWUKt7Qp3B4BsO3r2EryeU1jG5tjkh0GByO07uQMJbDh7fM62nQuMJmwa00fh/sFHSo23gtFVIeKo4MSesGww+cfCsA0cOnnXgQqUH1pHwmZPei9Jj3kBQblxzZts6odlwzavCNK/MCeuGq8QLpvAsHlIUKCyfcHA46TMk/QkVh5M+Q9I7ng5eMBqppYEzBuzoExDMTghOTuIkDvSZAmZ6BCcnc4uXaGDQmjOtClDHRTkHKfVzkM1+qByEGIam01BPwfB0GmpFGaKO45AdjwxqQ6Dq5MpWxrBzTreXSSyBkAPqUuiIgLrMaFViuBjk2e3PFGqDCo1YOtcsIRgRsGYOAXctyzlAcDwyZmjB89UYuF4BLn+5NO6Ea4MZmuW2ppBgwTMneBYTfnApiwiP2WBs+Hqi5noE+8Y1Z7yOYNw839jCrroQnJtnZPA+kUdNzFeBJ52OYN1EUmS+34iqmee4oTJn/tIoqGe+6whqI/F9RwNdmTRJyClRaCtAY2vI8G8MqWqB+4ZKHYSLr6DUQs8RlToJl1SbSlxmuDf+VAWTYEW4l4vZbm6E66jYUmUjQIP3O61wJRVUiFMTefQLvJh4V20tBxWxZnA5qv2uH0qQmgkE+caSvk3wb2w9Ik3mtbnQmf5boSeRCRKO9ZxvFqM2i35lgYtVaxdwLYoTiwBUbWrTAjTTInQtqmGBoOe45lxEYCg5T1gWe+bMIzsMGd82bVXmybvoBCnHkcisYz47vn/pl/2iW03OACDIOZ6UXagYQWTPF3YgMk9QRZHZg5pYte7JmQIsOydRzmMbvkWBObxt+Nv6oMyGv6+PIvO8VVAbRikeMQs0SvEIQsNHOEehsSEiJ/wbLAAeRzK9ioDtavyivlteft7368WynZ6IotST2NAPZrxNII1GqS5BqelGhucW2CpDpjAvtUrFCUILlFZwMa3AaX2AngQTaKwPKpgEC3S3DIwfNqola/XBk4pYffosF8FerpGsLTRvEtS5a3hkzKUJ9oz1nHMQ/BnrOZc+YdCwNfAvrK/zdH8NjNwuqMUpqK+o4oNLnYR6tRYOCIaNa85FAmbSzRMWdJHSMhyal8Z3FtnAdlYVedLZvaWBPQZ8crNqGN0HKZVAkb1ainlseFwQSzHQSKIID1pK4usxUHChhgRlZnhuuS71+ft+NghFJfYQAXZR4zmDDMI8KnBNgzARANWHMhoVlFq4g4VKrYxH9ZWdJgizqB5UMAmW5VYWFrFD4esDLGJHle5W1WxU+W5V9UaB8AbaVBQYb6AnRIHyBppD5DlvBhp6Y6NMegMDZuRZb6joKu0NXU+V9waaYhKIb1UnTALzrep/DO3mCSthz+x45Ighezp5hm5F2hTUvlEC+0ZJ7mdAt3dtSip+xPCzmEWDNlNEeMxwskCMwwTP/Cw4VGZ+Ghwqs1PS/6hcc7FZaHVAt8pt1lsdSWh15MiXG5jr5iT3DEBNCXM7UFNSuHWY/ReFW4dJXZROByi1wq2LlT26KL2NVAN75YnADbdXceW8txeh5YHt0CXK1RjmJEXugFRXT++AJP2EnKHtOMq2HcHbOUJDMdA1hi9+IoastEASpg+9BaIvsGu8XM2BayF3QkC1yZ0Q0EyVTkjFiV2jdEJSDUzohBTslRhCJyRjyCqlzjZYaeQM3xKBbhE649SaCLqT505oPHDLBZRcbYmA1qK2RECTSUR9Ueqin28vOCP0SMCHEG5pYdq3QksEk9kavtiCLmi7EwIPWWy9DgNIseXo11UdSyLwebxQt4DLGwRocH2FmQGo1MLQAFRq4UUepnL71xEvqzIvwvnki5mwgcmHUPAAMz2O9MKlyanJzhm1AHjtNEx+6CxPVMKcxvFD6cD9ziltFcywibk5R2jMsF1U8/9fWt8k5/9YWuMy383JGLLcbcHW2jcqPrbgXmnA1CIZMUzHNecimed7LtZgz+x55AZDDmzeb7G3PftIAzcYcKITflTkLJYqFroM6bzYXwGNhJ2vkzhLOaH6/HSfbn7I/HqfPmz0xU3u0YHvsqBC82/dQbXt6VYEaCZByF1RoaMADWpayF1RqbMADUotZLK2clvVEQN2zIvQNAlm5E7Bj2c/W7dHqx7ng6E6OroTAYbqqE4gqOs78OfqoP0Sk3eO0Jj9EqQfXxV6MgoRo3esJ82isKZt64aHHFAl8J08jyWmtRNb1+S+lQydpIN7QBLy0qppE1ygI1gtyCUhFcXeKM2M3HlCxt4pnfhcFHt9cErqubwDz+WTnJM6zNCKig/d6HFZTUoxm8lGhMcMJ1vhEH0CG2jbu+z4N5+DSvJ8EgwiBx4Z1HykT9Et9pLynORTdCecoufM1wmY62b5mjOoqSJccwYNpwgv7gEtpwjXnFGpnQANSi1ceraVm4OOeV3Wi/1iEkwm/YCbqEz6qT+/+pKeuhKK3EVw8imzV7g+WPDwxJuzjtDYm90Vsg/mgL5xfLljMX14uY3wKwsc9ErIKVmGb+RrKKhhCcSfmiN7hfhT82EvEH8sdIHFC8Qf6zFkmfgTsQLD88QfC12l8jLxx0K3krxA/EElF4k/qLWIxB/UZPg3fqCC8zwfVGae5wMiK6N6UGiBwA5qWhnVg0ot0Nlt5TKct54/4MV80KoDYeuyqvN6bKghJjkpjHrOYDNNALEB0zk/twdcTSeMgQVdRRncA7qKs3JO+AvrSxB86rFwcsd06uhXdClUzjq6HsI02Go4UEb1VCOB4wfA2oQ9s5C0Qgx97xs68YNuCXl+bI+NGLDlMz5QZDlXhe6/eO/FlC9h8GrCCloK/3I6FPnV0c9uu+qGSYU/A2dEH+T5TyHVTfJ4jifUGD79oixD4rNzRCyJT77V9XkqKYpPjkg/nnuD+Cy5IJD4gXnD4U+c9Xzr2wc2643ks7CHt2Ro0wcAgZuKMAAI3FTkAUC2cg/OywOAbKohCgOAwMxFGQAEbhv427cs6fpRIKqDhqYPAEJl5wcAgemLPAAIXc8i5OI1J1Gm/VT9Ixkxk8g1QOVkB7oy4JOTtpUs9REYGlCpftX0cxDdy0xCRwG61JaSeNePIeUkyHcNCS2MJrDQzQ+flXZlxqANYdvW1lUCpEzEzB8bOOVTQ3+OG8xPHuMnLkrQfo4HV+BzENtkIqEJsiwZWJiXc5GBJSuNytoekQVSuoOoyL4IFHXXYNBCO8RBhGHPUHoyCe34fQyF9nwQR6EDv/Wg0IT/WRJaeDneFPSni3k3tHcjzPVq3277bn1AWC1GqPHv/rW52a/a2dXV7P2+346/+/B44j7752I5bPr78aNf23736MvZjBuiTTGM/5n0/fv/ALS2WxE= |
用于中期游戏(蓝瓶科技)的黄瓶工厂。
产能: 58/min
尺寸: 32 x 32
输入:
1 |
0eNqtXV1vG8kR/CsEnxJAdHa+Z/QYIAEOuABBLi+HsxFQ1FpehFoSy2V8ysH/PUvJlihrJ6wq3MP5YIuqnanu3qltdvf+trzZHtv90PXj8vq35W172Azdfux2/fJ6+XO73e4+L4b20K6HzafFx/Vm3A0Pi4+7YXHf3S7u1vft4g8ngMVh07X9pv3ju/f9+/7vw+72uDmBXC9C/tN9N/3bT91/2+uFs4tfpz9OH/qh3x/H6/f9YrX45Z+7/YfFT2Pbbhf77XpsFy6/S0+/9/zjH4Zd//WnKb3z3/30L9t2M06f6DaLTTdsjt24KPENxo/Hm6HbrPtxYUvz3c/+vB7HdtrczKV/nEi4bftDNz4sDuMwbe04tM87e/7YtO1Nezh0/d3i2E8L+Ia0vFoe+vV+Ne5Wd0N3e+L51+W1iVfLh9P/vlwt1zeH3fY4tqvT5/YTwPJ6ukx7tew2u/6wvP7lt+Whu+vX29Pvjg/7djJON7b3E3I/2WD623HsttPyVl/tsNqvN/9eTshdf9ueLvblw9Wy7cdu7NonvMe/PPyrP97ftMP0gWekcVj3h/1uGFc37XacrrDfTRt/dIjHdbt34Wnh78KEf9sN7ebpp9NG3sBaGNbWYP0MrINhA7NaD8N6BjbAsImBjTBsZGATDFsY2AzDZga2wLDGMLimwYEbChiPNPMt1BokJozlgbEV49FmLAWMx5sJFBV4xBlPAUceGLqhmcRTgQHjcWeqdx87B/wSeftuOpDewsUzZueOhuYVwNPpuDv2t/8HylSgDL9JyN6WiKnCsGcdD4ytmIipzDiSxWPKNhQwHlOWuoXbxANjHGdaLFkIt9C4DnE219AqDFqvMzSug3Bfom59OLT3N9tJEa/u15tPXd+ubF3fPKFP2N2TQp6eB1Z306PL6vOn6dFiOXeplzj8uD6Mq64/tMP0GFBXfBZinFeSGDOBFmcYbqRxMQ9JKL2ZcujMizOMB0FOOujJQpCTFgI2/IoxYEFOYlQIchID9jwwRkXgqcCAX8LusJ8e32cjwxD+6wUZCQWyz7zwxSgovHSz8yowEDEWmbt5MDywq6zR8vIMMlCADzJTmKAKgp6EXDUEXp1h1oq8UMWAEylLntftX+uSj9uH028Ou5vduPo4nCDnLoeHnHUU84UHhnwwEjrTMsxHwzIf55mvZEnfXtDSStxDDDkaN0C4nlbiGG6gcTEeoqjw42t7PmYe5vATrb+xdWcaN0Cp3ELrb8h+qaFxIR6S4eUstmDLA2MrdryG8/NneBLSlh65zaXAA4fKGoVEpYe+HUg8cG2NmZdVNZMIKrIClRseqrLB/BIl2910f/u07m/bW0SaQTeNbFV4yNLZ8coPivEsSEooxnPghQ0GHHlgjAo4P2Kp8yRn0jUsdRPIBV52ZnALISCpc7AYHhjyjMILxYQcBYUXihFaLy8UMVxeKCYIN9KCC8NNbN43QmbLtN7C6C1sHhVarmmEtCTEr2kEhRgxZMsf0HH+gDaN47FSDUs41kAuA48MchlVCZGwIoqk4kcMP6spmaSkZEzzEofHaSfD0xfWl6TAWytfPRdxnYrgZi9FFKBY6ggwRs6mJC2bYoxV5QjmBsbRMgrz37MKFVTogMCBFyTYzYIoUbGF85tEn/EZA840cMGAC10nmKFz0za0LAGBDV0rCAJbuloQBHa05MmVE5SoXSlnfjALFehyQ8yliGqVTAWBpY9KU8OfvePYrOIXDL/wgg9jxgkiFTOmoxM0luKcLmR5TpmVGcnwfO62j7Xu3WbV9ncnoFOx+ey5e1bdQu4PszlR5mLSheAnSluesWrRf1bOcunL0MhtOPFKHHTFzCOD4VNUDY5xclbagn7zjEWPN6q4N42k7s9KXg7Hm8O4fsSe0ZBP7ExX6Nvu7tPN7jiceipMSFfOlg+z0E7V3N/vBRbdRDmMLZSvekG8Yr7qia8tvvGDlUF79nh1VfxZGXRWIHMhCtxrw16MgsK30IBF8nxZKEh2YCM3vMZ/OekuHHBn5TQXWE+cOYPj21VA1j2PDLLOF4eaSkG9CXxBqGlqWAm6rZ6SBI9LenNfne7L3jSz99UgVIKihhIELWip2FzqnfCXDHRWElOBCBchrNCAAbbJOLQ5pL46QVvWwQRxWfXnGGnBY7B+qCinS8HDJAoqE/XpIkBj3nRWxUJkXWfAn9Ouu+NYy7sSpS3WcRQlS6cpQcdJTk2wgo6T+EQoiiyISZRvIRWKumTiharFkDOP7DDkokpgqEjT5IaWwFAJssl8nxFIdhb60zGys1MlsOckcBb0JEgOn0NFyRHUZaWg3mShX93WsOQcqbGYJxf5AlioFKVtHXOHInyjD/pDsWqeEuS9ODURa77rKYRzr2eVNuyeQFMHQb7XPL/wGVN0mUmQ3rVgL0o3e3XPcmIU27o9q65hL2CxCxhBc0MhaRuhUQm7kdjGyXldp+R1LVGZYx25F6HkFLVAlFPGTksZW7pc5+UxAnTYzD8BgbHGl6SCyEYoSgVNbISyVNAxmWkwr5XnRWTHIwcM2asPKAGauXFWdEPieww/8k8TIOd86Q3KeaYz6CAZhX96wMggim8yRwZRfVPOkWexLI/la1hOfmyA2gUsMzWmIa0VBGjQXFFW9fH3qK+wfM2OJe2i6N2qFwlNUlX3drq2xbZ+VpsDZ9k9hqxIW8wjndAzBcbRWa0Nq5qjpJqdIm3BvQj9VKgFkqyao6iaidIdW8jdFAEaswEzkaZ+15xFNjxywpCtKuCgpivrHZ3BhgrUrefbrlCy+cYrlOyoZrATlcG2PtESFDSnMHMUZF0Qtxjrge/YN5WOJBsEORtrWFaWoFiIEBU3LzoRs1ZQ1C1oriArQJCWKIi2qkMkIWUMEpH5BDLIgCJba24c+WJVA3X02Cg3+4M8REW2YsaLimzFYi8quVcQWhGoICGRz1OCbqKnWEE3yXwiFERWxCjGd1JyrJiXJEGNZgxZSLEWDJnXoQWbiCtnWKFmMJsENQqSLeRWQbKTqHNtw+ncJMhRkBxBjmLkZEGOVrpybBbkaK5h6XIUi5SsyFHMWlmRo6C5gpoRfePMaA40R1kBg5ZIcKVz1VsyXG9dhVBUaC0SijL6vgomDL+vbrNYuHC7CuFkIYw5BF9ZU6oBOn8BYd4GGKDEPBtDHgJFHk/6de1sgvisGIcpyy7CNAxbhJmlGG/urEqHzRgXLWPsGiM/BEAe7Bqh0rxgyI5/vACRhX5FLOpco9SYg97DdyzaBkPmS8wt9vKsJotPAdZgr5tQC83fMjOLb4T3WWCcG77SHOTc0J2KKBl8pyJKBl9ZjpLBdyraSmuXM8KrK5oaljyDw0LNLs4I7YqotYR2RdBctlElPkiL8v6mqkNYYT5c1SOso9Pa6J5lFWsNdoFAp7rRpQsiFnU1YcAGGCBWnhVnraKP3Vm9DTBOwjJ9z87JovX7zcCi1QnFqqDViYocWzirO75a1WKvNmKG33xDxl5C5NQ6VYu9PQkfj+OqlMzeGBxfpoqSzY+IQ8kuavrXUelfh8/JSZw5iXqbzLFOvAMqc6x7fmqcrTQFOc+PjbO2hhVkBQh1Ezgf5QtgMci8Aqoh3UFRr6A/FFliYryHRs6Mu9+jVtgFedYcaPig6N5aHARB94KGEOZ6VEM/CBoXXKY8GRk1l6J0wZdEClM+wFtAkAYgz4ADozhcFEYggxRFQydIQceJ8qxj0HEin4FFkYUMLMq3kIEFXTIKGViPIQsZ2IAh09PibMBMKKdeoa4ul4TUK0Z2ElKvGNnJqgo/cgo/CalYkBwhFQuSI6RiKz1BLgmpWF/DUmQsSKYiY0E2C1qrUCUxw7Ph6hBKOrVmiKzIyurK4LlwdQjP106AjpGDrPmwu3PWRaXHLqCISsy1syIqQd6LnJkNUma2KMIS20sRxseBFihWzvkGMedb5LlyoMMWz+twLNZK4GUyiCyMlUNNnARo0DH5uXI2YsiFR4bKwj09QMdV8e0svlHxI4bPj5fDOPdnZTjAc3id9culV77xdN4aZIefL4eyIwjRSs+Ub/j5cjbWsBTlCW5Z+fofi8KzchtgfrNNxFx8T7+L6kX9Jq1g2RtF0NYsaoQXyFVdDX/b1IuyhbqOvBHypCAyPwzZRgxZ0bKgRytaFotDo2vZrGhZbxUti+3FKloWs4DVtWzWtKwnXlRlC7kbJXEK2iDw4grq1fKW76hCkRP98loUOSuypyjfPnjLvzzu7ZVmd+H4t8eB/BA1OqGKPOuHjn9/HMqGo195hyILWVMQWciaVvp3vBPEaq5hEWemIbesaFfQtwjt6rhVM1NuLAlNZFnJGwRRd/Oih0FoRbDW3M0r3+XX4oCYZGPIW4zX865Q74r38os7bMYuoChWLPq80FoFQodGTh9ivAfha3yM8KCUpBaMFeELfHDRig4FTcl39juogcUTE24ciZxonYUiZ1pnociF1lkgMlFNk0hkvgAVReaHqKLIjldKrtIl4qPQ0Y+uM/ACxkFtHJ4pnHn2Naig3zOVM3U3nocWRqKihAivsAKhiboZU0hoIkvTkNDEIWhIaCIbQ/p1EkZOodDEKehJaCIdE0ho4lvFSEITfRlkNBJDbSwZjVkYNzUH/eFq2Y3t/QRzsz22+6HrTwjb9QQ1/dvfdrfHbbu4vl783G63u8+Lf7SHdj1sPi3+ut6Mu+Fh+ux/2uHwdPPPZtqxTTFM/5n05cv/ACTpyfY= |
用于中期游戏(蓝瓶科技)的两种机器人工厂,会自动部署到机器人网络里。
产能:
尺寸: 32 x 32
输入:
常量输入:
1 |
0eNrVXV1v68YR/SuEnlrASrnfXKMo0BYtECAFiiYvRe6FIUu0LxGZFCjqNm7g/15StC3a5lrnTFygfcgNbMlnd2dnlmeHZ3Z/WVxvD+WurepucfnLYlPu122166qmXlwu/tFcN112s1p3TXuf3TRtdldtstvVXZn9ZvizbL+uynpd/jbrmuz6UG032areZJtyt23uM539VNWbfdbcZO0AtP/mU/2p/nvbbA7roYHLT3W2zL5rbqt9V63H72Qq/91dVR8/+XNT77t2/O6rT7+v/l1eZkZnP/f/DKjf1rtDNwL++EOz+5x935XlNtttV12Z2RPm+OG3bY84fla8/uwv23Ld9Z/3PVpX7fpQ9a3q11/67nDdVutV3WUmf/3Zn1ZdV/bmetPqHzdfV72xNs+4T7Cf6uNQB7jqNI6XhrnMfli1t2WXre6aQ//F3qjbF1/YJ2w284frN19aXCz29Wq37JrlbVttBk/4eXGp/MXifvjfw8Vidb1vtoeuXA7f21X17eKyhygvFtWAtrj88ZfFvrqtV9vhb7v7Xdm7T9WVdz1y3ftL/9NTd5djiz1m7x3l0MzDxdk/nnb5DYB++HyxKOuu6qpy7Mrxh/ur+nB3XbZ9C884Xbuq97um7ZbX5XYY9q7ZV6O3H4esv3HjmL9xPf6masv1+KkdOvkKVsOwJgXrZ2ANDGsZWAvDOgbWwbCegfUwbGBgAwxbMLAFDBsZ2AjDqpzBVTkOrChgPNKUpoDxWFNUsCnDA+fI4qDweFOOWXUUHnHKUsCeB8ZMEXhTYMB43KlAmSLywFCP9SnydtWuHB+4/XN5MwM8XS/noNQLqHcA8gQAEVPJZUvPARMxVVDAeExpRQE7HhibbzymdE5xDzymtKFMgceU1hQwHlPaMcAGf5ppSwETvJFaXgweedpTPTY00zVQhy2NqyFcR9M8DJenjway7ynqVvt9eXe97XdCy7vV+ktVl0v9Di8b4Xvwatzd9DvM5W25apf/+tJvVBdzbZ0C8Wa175ZVvS/bfmeZpqoaGkKkKTDkIjZHu6s0Y3KreIKGdVhAKSHns6cg3O+2VTdvBE8AWp6YYSZwPDEz0F5TQCU1BBx4Yoa5GUElPWVjAZWEvMLlPH0z80zQKZ6w6QSU5qFSvTI8d4KmxFkeGJsSN8l29Q+GL6t6U27eWQqfySQUVc6TT59n5mdfPn1utvfDXx7zaMubdoCca+4Ua8M3ByvNNBGPDQzw66bu2mZ7dV1+WX2tmnb4RluuNldPmb/94vJmtd2XF+Ovj81f7btVtx+TibNOcIrLfpdUtuNu6RwLeztbF895xSHDOjvcSHMciziFz2lcB+EqmuNg/dU0LtZfI+VO/qX3Hne7cw1YmtlgBnE0roNSnJ4nIJilAw+MWeIUjPvD9RC5w1dT3GZ4bVCX1e2X6+bQDnl5reLnOdTIkwXIDiHngSE7BMU/0+38Qy5onndYhNAEw9ODVB8tD+USUI5/9GJzLUi0YHMd0H3N88Mciv5QSLmCheAj3G3H4BY5n7qA7FwoHhjyjIKIsEfcAOEaGtdDuBadOZOCnZ04lpualDHmVpvC0yQHM3KgcTEjFyQZcS96/cxFyvp2+INDXc1yyiLSXAoyd8xpXMgsUdFUB5rGqNlclofMYOicE4ZreQKF2Vfw7g4zsCDhgvU48M9+P//sjwUPFRJQkX/aQ3ZUec4jewxZSR/4AXunr6X4HsM30uxDkGQfVG5pBgMayklSCiGdUmgOXSKnoHLPsxrQnQKPDIbAKU43/Zz1Flqum7vrql51zRxPyBO2n88IPUJe9Z9tjjD74bc3Vbvvrt6IwL5WbXfof3Padh6/sfznoP7alwPGFS076wezW7XHwVwuft9/c5w/vPX1l3L904i0u+8Hcqi7q5u2ubsac0tjkuthzIjVozmOg1RjRmwzlagNYjttzEO/MV7oxOcqj/3nD7NzdVoI34mP4h0fnpujR4HiaY4EUzQx0qhtXFzmr2z/hwVhpKNbPnXsaLWUTRh106NhIhQYjLrpEbjAgDVL+SOmxjJCzl8gLEkp/q0waGhHA4OG9kLar3KK9ysFZw0CZ/KCJuigZfjXwthc6pwXMYLIikfGjMEoo5KRPi9jpJPg9qUHTh1k6o9H1Xr/lDvnmISESmluaI7fNIHIgs0NiBx4OR7onILNTjG/2VGEcuoZKyawjGB/g42YUUtx4WjEOxvsMWkMneLF3GsimyK3TK+fN+CeidBTPW9swNn1PDI4u4KNDIhc8MigNSKzhXz5JD6/aZxIqd57zfb46l3lM+/ZLox2n2exeQ6rMMm05fPsClTSS2nszDNzFt9K8RWGz9NZ1OZ82h21OU1gUWMLamUSAnZFaKvi1LCzVRU5XxoE1mvwSXVwkhz7YFTpyJt9gDkjbgCrviGkWKcSJ9DsTgAN2t2zZtGk3YO4AdDu7NvnU/0M2EAUN4CZyOdo+Usy5D1cQZNcgbykhiYJJpBspAdnaVILTq0XqxzRqZUUzYAlbkEAjS0KvqDfV6D2iII6FMwehERKB84eQSDoQKEl9TOgQYyE2T+Cn5OYKkZJ9QRtsH47HlljyJ5NTitIyq9CkNJuSNGvQsGTY9DYvFQYNPZEXkUmqA2XoJ7IrVB+j1mdkFvFqW1msQyPZVJYvDoY9IaC1wej3uDF9BsqKFBFEDeAxXhRCEg4aHbJ6QiY3SfyKpZ+Y3aPStwAZveJ4Ip9z2A+5D1DNGL+D5rQwuQ9tSRM1FjnIFIrFKO7OrvcSbRW6cGJ9cXoBERxA5APa4kUC1s7dC54V4GtHTrX4py/keT8dW74fYfBJgDfQoYzvq0noqtzWP4sFl0H99y9V4Vwb8RBM43h+v+C9JSCp+wOQ448MiTS14ovZgP7rBS9zYDqLLTS0m0GVGejFX/mAmpsK90MeGozoAm9TZwOYRbL81guhSU4rgv0Nl5Hg05axGrk9GN3X7+8G97++eLC5ubz7Jk9AjkNaBOJngY0ipbTUf8RdFRrOR2FyqK0xuloyts1TkdTwacldDQJJqGjycHJ6Si2zOvI57uxqZVIZsCQk2hmwJAzch7qRTx0oqJ5kvye0Y2nJ3helnxTbfsJFR42epRpjwew/epzRx+xXD49gvRXSJnVxJ7Dz2bYPb/8wrzWWRtBQjlg/iNIKHsMWSBaAPvMVwuifS6kJDJgJ+ZFKb7HDs7L6XQvCKx4upeoD9NWkDoOKSzDEzzMyawgkYw5mXXibCxU+aStPJ/ssQaCgEKCZpdkkkG7R3E2FrO7k+eTMbs7Jaa34Ai0uAFwBAYmv6mQdzgFT61AjGbo7HLmJGQ8OTj+GAp0auXMHJxaQbEuuCh4CTXHFgWv+LQqZg+vxenLV5W0s+x0pkH+pAoVMSMJ6GeBIUuPq3jb81ne4nlVQ4HNroCDgsYW6BlAY0dpojFyicbA01BsOoOAhibKbXQQ0NCYwhLQUMwbgoCGYt4Q5DQUC5Egp6ERa0BCQ0GzS2goaPcoTpLGD0mSFnKaik18IZc9YBNfyGkq2ABOU1NLQoHT1NQKVUhoahJMQlOTgwtiMglOgJytgj4qYavY2hElbBVbOyaCIjbbG0XZXvxEJ+24GcYPddKBtL/lNQggsuNFAqkQYiRFT8fdYldGMPqiJ2TslotYsGxaK8wZpHlRnWNXR/B6BszYJucvHcOMbWiF0VMAak2xdZPz8ludqG0xueWxVAqLF9yik+Z5ZHDSBJQU7bSAkqK9FlNSrT+CkhqVSwmdhmprjIJrwJLuOBEYnYNIRYcSVH6lwQTH9aYHJy72wlZ4ozyd2ESnVlDrBYYcIR/SZMipKGVyr5d3jMkZLSgBS/qeFlyZlPQ9LSjzSoMZAVhymFZSJTbjAedrxsxEFgScBqH1nKAsoSYzWsA1sQujtIBrYlc7aemreI3dj6TFlBO7QsoIKCdmcyOgnJjNjWbztqCxjYBiJmThxggopklhCSgmOEkCiglOkriYS0P1AIYWwah0aM83ICjpAs1uBbpZ0O5WnNUE7W61uAHM7lasjkVHYMUNgCOAtbPJkJ+IY85BpFYgK1DMpsEEJ8ilB8erY8GppbUtmlwUnEAjCy4KxGVlmlwUHF+VhdrDCih2ysmc4MC4pJM5wWHXaTDBsXDpYRYivm4kZ34bx1dfaYfdasqfbKwthqykpNdBPM/TJxxrSJxvPF99hRpbcOctaGwnTeA6LoGLi1wCOZ2Bp9qJMhPj+QPhtEth8acYg94Q+OPhQG8ISsyqsRAJ4lPitMMaMAJuDZpdcD4cancnzm27D8ltB/EpcujEi0+RQydefIoc2kCEOXlqSSjgc+KSKxRxNZk6u9wVghPj0oMzYvKNTUBhxQ1gPloILgQE145CcIwcuHYUQZykd6IkfcEfLofOcMRv+dXhQ675hQvl4Do4M5HWMNcEW+xEZhMFZ9klgzZKXmuklpOJWoa4rGcmOP+Lt/X8gN/Wk6q3/B+7saePmlclm+fu8DHRJn3XMnf4PE7d/8u1PW9CWCfNwBecaqhKxEgUVR5DDsyyk+418Bowil97QYWcJvJnGmJGsoTGKk6RZ7F4nb8OKSzNb+nAERvmDJDjUxU9wN/mkh1RwLotODEbtYgXb7aKj9hs2TyItypQVZedqLDO7TOSDonvdlLxwdx9djZAlGTfk+yZ+BIXDdUxWsXf4gJOLXPPGRlySrL9wUKOvuvstEcpJHsUqyQZ+6TvCe5uSfueICMP3cdmdS4hAFHyXsES2ipDjkLzz34QGU8NuiTyrHsTF5lZss+O73PEkD19bTeKjMeeJ5EF6flEqZHV/H0tOlEmYY0gIY+N2AjOQQOd1shT8VD1kjXiC1t0xBqw4pwyOAInbgAcgRczQXAEcqoJjgCnmqlIZJRWBbd8Mkqr4lyUWwkFTQ3aSlLvyZ4J6CY2vVaec8cc1EpIJ1QIZ60k546tnRNx1X63rbr3s98mf7NpHI+Pe940NnW/bXzMTJ1Siru2atq+3SEd3u/I55mYFWTjwamJojx2hK4fscQdZ/rsEuJ4OmqgojzreDqKIvN0FEXm6SiK7GjSiCJ7mjSiyLw+BEXmD+5FkSN/6TMI7QXiYxRa8bcuo9CavyoahSYUI2QgMkcSkZHoifwoGYrElWeKjEVCq6VehMwsGJGWYYNEcPACCM3cckYGCXPLGRkkzC1npCcTii0dzvkEodHS7/nu54vxZfDl4np7KHsiVg8I21UP1f/ub83msC2zy8vsH0MeMvvrat017X3/ja9lux8hCmVD1MG7/j8VHh7+AziI/6U= |
用于物流总线的3x4+8的总线结构,可以用于任意长度的总线。
尺寸: 32 x 32
1 |
0eNqlnUFv3EYaRP+KMNfIAdndbJI67nlve9wEC8keGAPII0EzWthr+L/vyIYdAR5Z71UuMZw4lZoSm93zUvz4eXNz+7i9f9jtj5urz5t328Pbh939cXe331xt6sd28dvFcvHhere/uHk8/LH/Y/+v3f+2Vxe1XHw8/WVzuTnsr+/fHO/evH/YvXtS+Li5Gvvl5tPTL18uN9c3h7vbx+P2zdOfu9/t32+ujg+P28vN7u3d/rC5+vfnzWH3fn99+/TvHj/db0//2d1x++GkvL/+8PS748P1/nB/93B8c7O9PW5Omrv9u+3Tf+bLn5eb7f64O+6235S+/ubTf/aPH262D6c/8JLG5eb+7rD79iG/Of59+mq5/D6d9N/tHrZvv/3T00f4SbZo2UpkK5atxm3DssXITtotCqFrt0h2xrKTCWHRssjtimWbcTsOWhfZHfk6m5XfonWZX77SuvLbtC7zy9faqvx2rcv88tW2KL+L1mV++XobByNcBi/MdiCxs6k9qBQvzBzzNTeqfag0L8yi4KtuVFtc6V6YRcHX3ahu8IUvvFFtdGX1jlEUdfCOmbBYeeomX8XKU7tdrd4xi6J5x0xYrDy14VWx8tQOUmfvmAkv3jGLgq+8om70bfDCKIrGV15Ru3QrXphFwVdecV/pxHc6tZm2yTtmGXfvmAnzlVfUjb7xlVfU1tRW7xhFMQ3eMRMWK0/tIJNYeWrPm6p3zISbd8yiECtP7SBT98LMsVh5amuaFi/MouArr6obfR+8MKNhnmBOSNcjzIZ0q8Z3zG/TtJHpTtovy6Frv0zXc0yWgweZzK8nmcjv7Ekm8jt7ksn8epLJ/HqSyfx6ksn8epLJ/HqSyfx6ksn8epLJ/AYkEwkvAclESSwByWTCAclkUQQkkzlungsyx5N3zIQDksmimD2+Y44XDxyZ8OodoyjWwTtmwqPHdyiKtXjgyIQDksmiCEgmEw5IJhPuXphlPHvgyIQDksmiCEjmxP53eYAyG1MOWCb0HMBM6Ll6hAc9N08dofLkPcM0uvcMlQOiCdMIkCZUXr0yS0N0VsrklAOqydIQvZXSnefq8SNUDsAmTCMgm9BzgDah54BtQs8B3ISeA7rJPJcAbzLPxfPNhQl7wLkyYU84obDvacIofFMTOvaQEzr+a/Ud7m93x+Pp777I9VYi6PEmdPrXmnvcv9s+vH+4O/36ivTP6V5+Lz7fPR7vH58qzmc6i4NGcuwziEZLf/YJzkoV8IP7vnuMAzFXNSj76VO3s8JNE0MY56Qds+X2rLzy+rW2vn6t7fYvXmqzh30wnAVcID9wHFnaz3osv1AczDUnGiyjuxWLCsvodg/RYRndXV6UWEZ3mxctlh9kC3qePIyDyt17hmkEyBMqLx6bwTRWz82YsuiyjG67mwLsCZWLZ3JQuXp2BnNu3jNUnrxnmEYHt/wfcItsIqbK4r6HPOuyvL5pl/FvnRBFvaW4fUv0W0p55Yz4rNLyi59eNRu2aLOUpk6Jps/ibsqi0VLc5ves0wIuuenvHBRFzaW4u3QnXwF/gCiyxjs5ev5wya671bMc9jMU/Zbibp6i4VLcDV90XIrb/kTLpbrvI6Ln8kMZpjFpAPX0vYcod688MOVZIyjqefHK0POqIRT0LCov1XleRsG3xpEoloBDnXFLjhmi/zLJxH3r7OfPcHYfFw2YLj13jXvoVTIHvOdXP9OX9/HF19G+xnNWa9VgDUb9rAkD4BFaN6YDM0i3xbMeKh0gGXjRrcHTtFQ6eJ6WBtI9O6Gug2dqqXTwVC0NJHiulkkXUYoZZxVIGYJna6l00EmjgdQgECgd0BkqHTTTaNbBU7ZUOmin0UAWQ5XI7lKGNYE/2bGsjEFZDUZjmjJFHcyKqcoU6bp6wgIvw2dlGYFYorNZMfWZ9srhrJjGzCTjVsQGrR/TlZE37TFAN1C6BOwGXnclgDfUdUBvqOsA31DpgN/QQAKA05hyAHAmphwAHKgcAByYRgBwmOcaABzmuSqAgxSLhyrQa03Q0BSdQWoAcOCnCADO9MImWLtpKXXizj8m+PPnPns+EvNfVpno6j2zdfesPyPA1ZQcjlrCb1g+rSjahCSr6iqRK68lvAYGEDw1SK+Q4LlBKj0H0jCQ4NlB6jp4ehBKT8HzgzAQU6WRu9aU8BoYSMJroHQLXMNApsA1lA6eJaTSCa+BWS+Bayi9Bq5ZIH1QlAlJjgH4gW5LBLCyw2MPni+knyOYl/bi8fFZv4YUmMgubno0zR0ge/A0IU01eJwQrsC+RoAtOkOaro28ac+jYmJIsqgaE7n6RL2myJu06NcUeSedg8cKqevguULqeg6AFZReAmkYyOqJ1cwGCw9euTPl0RMr6Ll4ZejZvwKCevYD1KjnybCwmSj2hFj16NCx+IFqNPHFE6uOtnTRsOnOs5g1s7ir5FnRRjChnuznonizPI/nrFb1+A1G3RReIuvGFGwG6bYHLAhKJ8AGXnRL4BpKr4HrmU2uD0bXM9fVFGyalC6BaxhIDVxD6WDwEw1kClgQlO6BNAxkDgKB0gmwgdJrIM2yFrWacZHSYyDNAhmLwkwzkawRC4qOZdVMoxllNMFIKHYwq2Mw5J66ngPWAi/DJWItydmsjsGcqJcOZ7UEo6Fg3MWBG7J+SjAUirpNAA6UTgAOu+5KAnCg6wTgQNcJwIHSCcCBgXiAU0b2ciEPcMrAlD3AoZ49wKGeg3d4Qs8e4FDPBuCUkSh2/7ZN6HUO0NCZhMkZpHqAQz+FBzjlhUZvbYMoM5VC3uo1+rc3orJ3FUNqVpdo82Oi4LprLQBXv7riXj4ctYDf0Hy6oU1okbfZlJnYlRfwGhrAGkizK8QUbORN3xRs5F3fFGyadF2Ddy9C6WBkFA0kmBlFpQNeQwMJeA2VDsZG0UCCuVFQWoyqGeUm0wNeA7PuwegoKh3MjqKBNEOZ0K5iXsgkv0/0ngCs8PBoajdyKzO1m/La8bGvpsyEdvE5eA0hPECa4TXyHj0HM6TgCpxrAtiyM6Qp3Mib9jwZJoZW+9xNmYldfclbCeHPMRjdTbNdg5c0MteiYVPkhigqNlV+YREdm7+kYSDVEyv2SmXzAqfvyvAt0P49hVS5e2WYxuyJFfS8eGXoeTUsrJLXbA8JsSrRoUNMs5lc4qJT01/8DGe39NW/wZB6bp4JwVenTwkTKsl+vvrxUl/jOas1e/wGo1Zjvdm6Cd5kyNy2IZjvTaUTYMPeGj4E86SodDBPigbSAqoCXU8BC4LSwTwpGkgwT4pKLwFVgYGsAQti0mMw6RsGMgajvql0AmygdA2kYdYtYEFQOhj3TQNR877J7tLGOWJB0bGsmTE2o4wmGPnNDmatBDO/oWszxkbeuUuJWEtyNmslGDD10uGsmaKN3HKKAzdk/ZRg8Dd1mwAcKJ0AHHjdJQCHua4JwGGuawJwoHQCcGAgAcCZmXIAcDpTDgAO9OzfwkaV/TQpmkYAcKAyX4fNKYu3QjWXcwuwDVT2U6VoGgG2gZ75Gpylsp8hRdPo3jNU9pOlaBp+shRV9pOlYBqiarNK5WCQFIzDNG0G6VrshHIrNE0buRdOwSBwKh0MlqKBzAF/g9JJ7w0GEgyWgtI9GCxFpYPBUjDrnvTeoHQwWIoGEgyWotLBYCkaSNJ7g9LBYCkaSPCcInUdDJaC0nPSe2OBzMGAKSpdAmkYiKAzckc3JRu5o5upNnJvnIOnE6n0HLiGWSdtNyi9BsiNBbIkHTgonXTgWCBL0oGD0jUAhjAQsRrlBmZqN3IDM70beVgQxZsiNzDRvClyl1mCifxQeg0m8sNA1oSgQtcJQYWuA4K6MOWAoK5MefLMEHoOKnBQOajAwTT8PH6qHBBUpDyJ3s2kcp5E7aZJ5YCgwjSqZ4bQs5/CT5Un7xmm0b1nqBy03mAa/q2JVDkgqCyNMSCoUDkhqCyOMSGo0HVCUKF0QlBhIAlBha6DSW/UdTDpjUonBBUGErxKEUqXYNIblQ4mvcGsSzDpjUonBBUGkhBUKB1MeqOB9CAQKJ0QVBjIEkhD18GkNyhdE4LKAqkJQYXSCUGFgSQEFbpOCCp0Hcx3o657gDmhdPK8MAxkCVxD6YSgskBaQlChdFI/ZYGIwk2Re2NLCCoMJHloGLqeAswJpROCCgNJCCp0nRBU6DohqMz1lBBU5npKCCp0nRDUM67/vNzsjtsPJ5mb28ft/cNu/6Rwe32SOv29f9693x2Ou7eHi6uri/qx/bZc/OPxcPoD/90+HL4qlGVs81rmpazzsKxfvvwfgN+EHQ== |
用于分割各种模块,便于管理和防御的石墙结构
用于分割32x32模块结构的石墙,建造在单元格内侧。
尺寸: 32 x 32
1 |
0eNqVmk1v01AQRf+K9VYguVVm/O0dS9YsWFCEkuapPMl1otiBlir/nbihEhLczNxNo7T2yZvo9uQ51y9hMxzj/pDGOfQvYRun+0Paz2k3hj58yH6uhyGb5sPxfj4eYnac4jabd9k2/UjbmBWaPS0/pvQrZo+77XGIebY5pmHO0jgtR8zf3/5wezfejZ/OB/Zvp4U8TON6fzPvbh4Oabu8/FPopc7D8/JwysN6M+2G4xxvluP2aXwI/XkpMQ/pfjdOof/yEqb0MK6H5dz5eR/Pa05zfDyTx/Xj8myad2O8WaYIZ14at3F5idPXPMRxTnOKF8rrk+dv4/FxEw/nA/53fh72uyld3pnLSm+r16WubqvTKf8Hoi7I6g9E/g8pKAhYSemC6HVI5YIU1yG1C1JehzQuSHUd0rog9XVI54I01yGyclFag+LLbGdQfKEVI3Dii60Y/0HiC64YyRVfdMXIrvjCK0Z6xRdfMfIrvgCLkWDxRViMDKsvw2KEWJ3iNVKsvhSrkWL1pVitzwGnfo0Uqy/FaqRYfSlWI8XqS7EaKVZfitVIsfpSrEaKC1+K1Uhx4UuxGikufCkujBQXvhQXRoqLksOg/UxFbWgKQKkpigJKw42EMC2HQTN11EwV2OqtKEoJKMKNhDDKYdBM3Ca4AZSSotSAUnEjIUzNYdBMDTVTBygtRWkBpeNGAphqxWHATJVwV19AVxV5EYeunUgHQw4rYTQWZ2EByqo4DQsQaEV6GHJIEcOxOBML0FbNqViARGvSxZBDyhiOxdlYgLpqTscCRFqTPoYcUshwLM7IAvRVc0oWINOadDLiNKSU0VgNZ2UF+mo4Kyv6Hom0MuSQVoZjcVZWoK+G3BwDmzbs7hhxSCvDsTgrK9BXy1lZgU1b0sqQQ1oZjsVZWYG+Ws7KCmzaklaGHNLKcCzOygr01XJWVmDTlrQy4nSkldFYHVd3FEBfHWdliOGSXKCv5kuqr4CrqajuBGJqqrOAmIbqTyCmpXoLiOmoDgVhZLWiqgvMEapIwRzl2gsMKrg2BYNKrsHAoIprVDCo5loMDGq4VgWDWq7JwKCOa1YgyFnsiRlsZ7cnZrKd9Z6ayXYWfGom21nxqZlsZ8mnZrKdNZ+ayXYWfWom21n1qZlsZ9mnZrKddZ+ayXYWfmomW8l9dAELcPKiEK+o5OqbC+hrfrmBpf/rtpw8DOtNHM6/+/R2I07ff15uzHn3cRzj4f35iB/xML1CtZWy6bSpO121hZ5OvwFJ63eO |
用于分割32x32模块结构的石墙,建造在单元格外侧1格处。
尺寸: 32 x 32
1 |
0eNqVms1q21AQhV9F3FULcvHMtX53fYIusuiiKcWOL6moIhlLbpMGv3ulhEChPcycTRIb6ctM+DiRfPQcDv0lnc7dMIf2ORzTdHfuTnM3DqENH7Nf+77Ppvl8uZsv55RdpnTM5jE7dj+7Y8qiZo/rl6n7nbKH8XjpU54dLl0/Z+NlTuds/v72fibZoR/vfkzZ/tf+6cPtcDvcLGe1b4yQh2nYnzbzuLk/d8d1lsfQSpmHp/XbNQ/7wzT2C3WzHnfqhvvQLnOlPHR34zCF9stzmLr7Yd+v585Pp7Qs0M3pYSEP+4f11TSPQ9qsK4WF1w3HtP6K69c8pGHu5i69Ul5ePH0bLg+HdF4O+N/5eTiNU/f6Z3qZdLP9ULzMuv5wveb/YNSFEYMSXRRrlp2LEg1K4aKoQSldlMKgVC7KzqDULkplUBoXpTQosnVhGgvj07e2ME59LX/FJ7BYBotPYbEcFp/EYlksPo3F8lh8IotlsvhUFstl8cksls3qs1ksndWns1g+q89ntXxWn89q/nfw+ayWz+oMZctn9fmsls/q81ktn9Xns1o+q89ntXyOPp/V8jn6fFbL5+jzOZrXFz6fo+VzdF5iWB7Ggrv6EoApOQyapuK2QtPUHAZN03BLRXAxuOUwCjDCLYWmUQ6DponcUgXA7DjMDmAKbik0Tclh0DQVt1QFMDWHKQGm4ZYC0xRbDgOmKci7vRpglMM0ABO5pRCGDGO0FJvF6L6RDGMBMVqwaYw4ZBzDvcg8FpBdJRnIAqK0JBMZcshIhnuRmSwgv0oylAXEaUmmMuSQsQz3InNZQIaVZDALiNSSTGbEqchoRntVZDYLyLGKDGcBsVqR6Qw5ZDzDvch8VvRZGpnPCnK1IvMZcsh8hnuR+awgx2r2ghnkak3mM+Swl8xoLzKfFeRYTeazglytyXyGHDKf4V5kPivIsZrMZwW5WpP5jDgNmc9or4bMZwU51pD5rCBXGzKfIYfMZ7gXmc8R5GFD5nNEPQWZz3AeMp/hPOznGYqaky3VkmGOUJ0d5ijVlGFOpHo7zNlRbRnmFFR3hzkl1ZhhTkX1d5hTU50Z5jRUhQc5zipQTKGdZaCYRnvrQFNpbx9oOu0tBE2pvY2gabW3EjS19naCptfeUtAU29sKmmY7a0E1zXb2gmqa7S0GTbO9zaBptrcaNM32doOm2d5y0DTb2w6aZnvrQdNsbz9omu0sCKNptrMhjKbZkbxNfAV9zV8fomr/ek4sD/3+kPrlvZu3J8Pa9vP6pNi7T+tjX/J+OeRnOk8vVK1lVzValY1u66jX6x+wQD9+ |
用于分割32x32模块结构的石墙,建造在单元格外侧2格处。
尺寸: 32 x 32
1 |
0eNqVms1O20AUhV/FmlUrOShzJ/7d9Qm6YNFFQVV+RtSqY0exA6Qo7147KFKrcnTv2YBAyccZdPLhcPzmNu0pHo5NN7r6ze3isD02h7HpO1e7L8nLum2TYTyetuPpGJPTEHfJ2Ce75rnZxSRI8jp/GJrfMdn3u1Mb02Rzatox6U9jPCbjz9v3E0k2bb/9NSTrl/X57qF76O6nZ9U3hkvd0K0Pi7FfPB2b3Zzl1dU+T915/nRJ3Xoz9O1EXcyPOzTdk6unXDF1zbbvBld/f3ND89St2/m54/kQpwM0Y9xP5G69n78axr6Li/lIbuI13S7OP+LymLrYjc3YxHfK9Yvzj+6038Tj9ICPnp+6Qz8077+ma9LF8i67Zl34u+xySf/DiA3jb5jlx5hAYkCalQmjUTITRfvN5CZKUCiFiSIKpTRRMoVSmSgrheKXJkyuYWwFLjSMrcClhrEVuNIwxgJr3fO2CnvtleBtJfZa/7ytxl57NXhbkb3aQVuVvfaKEFuXvVZmsZXZa20WW5u9Vmex1dlrfRZbn0X9K2Prs2h9FlufReuzGLWs9VlsfRatz2Lrs2h9DrY+i9bnYOuzaH0Otj6L1udg67NofQ62Pgetz8HW56D1ORgvMrQ+B1ufg9bnUJIcdDlYcdeD6HJwyWFAmpXnToUwwmHQochr5QAwKw4jAJNxh0KYnMOgQxXcoTKAKTnMCmAq7lAAky05DDhU5rlDFQBDvuPLASZwh0KYFYdBh8q4Q5UAk3OYCmBIG6M0pIxRGtbFQH85KWOP3leTNoZ5WB2jPKSPPVBgTgrZAwfmpJFhHlLJMA/pZA80mJNS9sCDOWlllKcgtYzyFKSXPVBhQYrZAxcWpJlhHlLNMA/pZg90WJBy9sCHBWlnmIfUM8xD+lmAD0vSz4L+10j6GeYh/QzzkH4W4MOSvWAGPizZK2aUh/QzzEP6WYAPS9LPAnxYkn5GeSrSzyhPRfpZgA8r0s8CfFiRfoZ5SD/DPKSfBfiwIv0swIcV6WeYh/QzzEP6OSzRbkIKOsABhjQ0TkQqGicK3BoZAgKRksYgstVBECinNkkcqKBWScwpqV0ScypqmYQc4xyYqRxPrZOYI9SuiDmBmjkxZ0Uti5iTUUMn5uTctIhBBbd1YlDJjYsYVHFrJwRZZ0G11NZdUG21dRhUa21dBtVeG6dBrxbbuA16tdnWcVBttnUdVJttnQfVZlv3QbXZ1oFQbbZ1IVSbbZ0I1WZbN0K12caRUNRmG1dCUZttnQnVZlt3QrXZ7FAIL68C+W4RJjJuheHfl8hj+n4zXv3X/Yapa9eb2E7fu7/dYVjX3+Y7Dj99vd4+KJ+nxzzH43DFSulXRSVFXsmyDHK5/AE2R/ib |
用于分割32x16模块结构的半格石墙,建造在单元格内侧。
尺寸: 32 x 16
1 |
0eNqVmb1u2zAYRV9F4NQCciBSIvWzdWuHTh06NEFhR2xKQKYMiUqTBn73SnYDFGiuxDsZtqnjS+PzAX31Ig7dZE+D80E0L6K14/3gTsH1XjTiQ/Jr33XJGIbpPkyDTabRtknok9Y9utYmuUqeEmmS0f22ybFvp86myWFyXUicH5cV4efrGze3/tZ/mRc2r5eJVIx+f9qFfvcwuHb5+CfRSJOK5+XhnIr9Yey7Kdjdsu7k/INo5ig2Fe6+96Novr2I0T34fbdcG55Pds7sgj3OZL8/Ls/G0Hu7W3YhZp7zrV0+4nyXCuuDC85eKZcnz9/9dDzYYV7w1vWpOPWju34zl6TZjb5GvdHnc/ofREVB5F9I9jYkp5IASBEFydchOgqi1iEmCqLXIWUUpFiHVFGQch1SR0HMOkRmUZR6gxI3s9UGJXJoN6ZWxo2t3JhbGTe4cmNyZdzoyo3ZlXHDK/W6FmTJYVCauAGWGz8DWVOCyYHqMoqiAEVy3wwKozgMSsOpVwNKQVEKQNHcllAYcoJRmpLaUwkoFUUxgFJzWwJh8ozDgDQ5d3CoAUVRlApQcm5LKEzBYVAazR2pgDxzw2HQqYp0MIxTkRyUh7OwBOYrOA1LYL6C9DCMQ4oY5uFMLIH9Ck7FEtivIF0M47DHCZSHs7EEBiw4HUtgwIL0MYqjSSGjPJr8KwcsqDklS2BBTToZxiGlDPNwVlZAg5qzskL/MEkrwziklWEezsoKaNCQh2NgQUNaGcZhj8coD2dlBTRoOCsrYEFDWhnGIa0M83BWVkCDhrOyAhY0pJVRnJK0MspTclZWQIMlZ2UFLFiSVoZxSCvDPJpqDnOgwZKzMsRwk5yj0q6iSkiYpqZqSISpMqqIhBhJVZEQo6gyEmJyqo6EmILqIyFGU4UkxBiuSoSckms2IafiykTIqbluE3HqjOsBIYct3xCHPF5cfXGXXu/bNP/cjUpFtz/Ybn7t8+UGUtN8XW5Gfdx3P5J3n7y3w/t5zaMdxgtWVbIoa1WaWmVVrs7nP9AimdM= |
用于分割32x16模块结构的半格石墙,建造在单元格外侧1格处。
尺寸: 32 x 16
1 |
0eNqVmc2K2zAYRV9FaNWCM+STf2R71113Xcyii85QnESdijp28M/MpEPevXbCQKG9SHeVxNgnuuHjoFy96V07u9Pgu0nXb/rgxv3gT5PvO13rT+qlaVs1TsO8n+bBqXl0BzX16uCf/cGp1KhXJYUa/W+njv1hbl2idrNvJ9XPkxvU9PP9uhK1a/v9L9W8NOe7h+6hu18eqt8ROtFj15w2U795GvxhXcqrrqVI9Hl9uSS62Y19u0A3630n3z3pelmWS7Tf992o629vevRPXdOuz07nk1vW7yd3XMhdc1w/jVPfuc2aSC883x3c+hWXx0S7bvKTdzfK9cP5ezcfd25Ybvjf84k+9aO//UrXlW62d/l1reubyyX5B2OiMCFKGkWRACWLopgAJY+ipAFKEUXJAhQbRckDlDKKUgQoVRTFBiiyjcKUIUzc+FYhTNz4Smh+JXKAQxMscSMsoRmWuCGW0BRL3BhLaI4lbpAlNMkSN8oSmmWpOPsJkN+WwyCHCpcKYQyHQaFSLlQKMBmHMQCTc6EQpuAwKJTlQuUAU3KYDGAqLhTApFsOA0Kl5I7CAozhMAXApFwohMk4DAqVc6EqgCk4TAkwlguFMKSMUSjWxcBbGSljQbtI0saQw+oY5SJ9LMBdGSlkASrNSCNDDqlkmIt0sgB/ZaSUBeg0I62MODmpZZQrJ70swGE5KWYBSs1JM0MOqWaYi3SzAI/lpJwFaDUn7Qw5pJ5hLtLPBnisIP1s0D9r0s+QQ/oZ5iL9bIDHCnbDDLxasDtmxCH9DHORfjbAYwXpZwO8WpB+RhxL+hnlsqSfDfCYJf1sgFct6WfIIf0Mc5F+NsBjlvSzAV61pJ8hh/QzzEX6OQUeK0k/p6htJP0MOaSfYS62zwA+LDOqpIaYnGrMIaagamqIsVRnDjElVVRDTEW15ghTbamqGmKE6s0hxlBVNcSkVHEOMRnXVENOzjXnkFNwTTXkWK45h5ySa6ohp+Kac8SRLbnNuIEek9shYf3XMWii22bn2uXa/fvBZ11/XQ9CPzftD/Xhy3q0KR+X+57dMF7RppTMVsYWldmWqblc/gCWXl68 |
用于分割32x16模块结构的半格石墙,建造在单元格外侧2格处。
尺寸: 32 x 16
1 |
0eNqVmUtr20AUhf/KMKsW5KA7emvXXXddZNFFE4psT9KhsmT0SOIG//dKNoZCc5g5q2AjfbnHHD6Gue962872OLhu0vW73ttxN7jj5PpO1/qLem3aVo3TMO+mebBqHu1eTb3auxe3tyox6k1Jrkb3x6pDv59bG6nt7NpJ9fNkBzX9un2vjNq2/e63al6b091D99DdLy/VN4SO9Ng1x83Ub54Ht19HedO15JE+rX/OkW62Y98u0M363NF1z7pexrKRdru+G3X9412P7rlr2vXd6XS0y/xusoeF3DWH9dM49Z3drIn0wnPd3q7/4vwYadtNbnL2Srl8OP3s5sPWDssDH70f6WM/uuuvdJl0E99ll1k3cpedz9F/GBOGkRsm/hiTkBgwTRqE8WXKgii+WfIgivFQiiBK4qGUQZTUQ6mCKJmHInEQJvdhwgpc+DBhBS59mLACVz5MWIHF12AJrLCvwxJWYvG1WMJqLL4eS1iRxddkCauy+LpswrosvjKbsDKLr83GkBygY0P6GI2Tchg0TcalQpicw6BQBRcqAZiSwxiAqbhQAJPEHAaESoQLlQEMeapIASbhQiFMymFQqIwLVQBMzmFygCm4UAhTchgUquJCVeD4F3OYEmBIGyMMKWMUinUxOhuTMhag0ZS0MeSwOka5SB8LcFdKClmASlPSyIiTkUpGuTLSyQL8lZFSFqDTjLQy5JBahrlILwtwWEaKWYBSM9LMkEOqGeYi3SzAYzkpZwFazUk7Qw6pZ5iL9LNB9wWknw3wak76GXJIP8NcpJ8N8FjOHpiBV3P2xAw4BelnlKsg/WyAxwrSzwZ4tSD9DDmkn2Eu0s8GeKwg/WyAVwvSz5BD+hnmIv1sgMdK0s8GeLUk/Qw5pJ9hLtLPCbpDJf2cAK+WpJ8hh/QzzFVwm4AEeKwk/Qw5ZJ8T4Ocqpq7x0TiVUDsFiDHURT7EJNRWAWJS6iofYjJqrwAxOXWVDzEFtViAmJK6yoeYilosIIzEMXeVj0HC7RYwyHCX+RiUcNsFDEq563wMyrj9AgaxcjYIRJ428EQlt6q4gh6j67K5/medHum22dp2+e7+tkCv6+/rQv1r0z6pT98uK3LzeXnwxQ7jhW1KSYvKFHll4jIx5/NfeAQXsQ== |
2023-01-07 22:56:13
AI绘画在这几个月火了起来,它能从提供的文字和图片中生成新的绘画,质量很高,而且非常有趣。这个封面就是用AI生成的[1]。但是在使用AI绘画的过程中,搞不懂steps,sampler之类的意思。为了想要更好的使用AI绘画,也想要理解AI绘画中那些参数的含义,所以本着学习新技术的目的,写了这篇文章来学习一下AI绘画。
这几个月风靡的AI绘画,主要是指在统计学和计算机视觉领域,用深度学习模型从一些条件输入中生成新的图片。这些输入主要是文字或者图片。比如说封面图它就是用Anything-V3.0模型[1]从文字直接生成的。
对于文字生成图片而言,AI绘画系统有两个重要模块,第一个是理解文字输入,第二个是使用这个理解去生成新的图片。所幸,学术界在之前已经存在了能高质量完成这两步的技术基础。其中Denoising Diffusion Probabilistic Models (DDPM/Diffusion)[2]提供高质量的图片生成技术,而Contrastive LanguageImage Pre-training (CLIP)[3]提供了高水平的自然语言跨模态理解。
这篇文章我们将从DDPM和CLIP开始学习AI绘画。
在DDPM出现之前,图片生成主要是通过变分自编码器(VAE)和生成对抗网络(GAN)来完成的。但是VAE生成的图片模糊,而GAN的训练很困难,最后生成的多样性比较有限。DDPM解决了这个难点,它能生成高质量的图片,而且也不需要对抗训练,训练起来也很简单。但是DDPM也有缺陷,它生成图片的速度比较慢,因为需要执行很多步的迭代。我们先从介绍DDPM开始。
Fig. 1. 生成式模型. Adapted from [4]
如上图所示,DDPM是从一个生成的噪声$z$中迭代多次生成图片的,而且相比于VAE和GAN存在一个低维的隐式表示$z$,DDPM的每次迭代生成的中间图片$x_t$都保持在相同的维度上。
DDPM之所以是Diffusion(扩散),是因为它是通过扩散过程来生成噪声,然后再训练模型去预测这个噪声来去噪,从而达到生成图片的目的。让我们先从扩散的前向过程,也就是生成噪声开始。
Fig. 2. 前向扩散过程. Adapted from [2]
首先需要定义用DDPM生成图片的过程。首先我们有一张真实图片$x_0\sim q(x)$从一个数据集中采样而来,我们希望能通过一系列手段去预测出$x_0$。
我们现在对$x_0$添加一点高斯噪声,一共添加$T$步,那么每步的结果可以表示为$x0$, $x1$, $x2$, …, $x_T$。那么每次从$x_{t-1}$添加噪声到$x_t$的过程可以表示为,
$$
\begin{equation}
x_t = \sqrt{\alpha_t}x_{t-1} + \sqrt{1 - \alpha_t}z_t
\end{equation}
$$
其中,$z_t \sim N(0, I)$是采样于标准正态分布的噪声。$\alpha_t$是一个一开始被决定好的常量,在原文中被称为步长,但是更像是一个权重,决定这一步中包含噪声的多少。这里可以看出$x_t$主要是取决于$x_{t-1}$和这个高斯分布$z_t$。所以,我们可以一步步递归计算到$x_0$,这里高斯分布被合并。
$$
\begin{equation}
x_t = \sqrt{\prod_{i=1}^t \alpha_i}x_0 + \sqrt{1 - \prod_{i=1}^t \alpha_i}z
\end{equation}
$$
为了表示简单,我们定义 $\bar{\alpha}_{t} = \prod_{i=1}^{t} \alpha_{i}$,则这个简化版的公式如下
$$
\begin{equation}
x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}z
\end{equation}
$$
我们可以认为,因为每个噪声都符合标准正态分布,所以每步加一个小噪声可以当成一口气加个大噪声,极大的简化了前向扩散过程。
代码如下。
1 |
def forward_process(x0, alpha_bar, t): |
既然我们已经知道了如何生成噪声,那么我们就可以通过预测这个噪声来去噪了。这个从$x_t$到$x_0$的过程就是反向扩散。
通过概率论的角度来看,这个前向扩散的过程可以记为条件概率分布的形式。其中从$x_0$加噪声到$x_t$的过程可以表示为$q(x_{t}|x_0)$。同理,我们也已知$q(x_{t-1}|x_0)$和$q(x_t|x_{t-1},x_0)$,根据贝叶斯公式,我们可以得到反向扩散的过程为,
$$
\begin{equation}
q(x_{t-1}|x_t,x_0)=\frac{q(x_t|x_{t-1},x_0)q(x_{t-1}|x_0)}{q(x_{t}|x_0)}
\end{equation}
$$
为了简单表示,我们定义$\beta_t = 1 - \alpha_t$
因为$q(x_t|x_{t-1}) \sim N(\sqrt{1-\beta_{t}}x_{t-1}, \beta_{t}I)$的方差是$\beta_{t}I$,所以我们把$q(x_{t-1}|x_t,x_0)$的方差记为$\tilde{\beta}_{t}I$,而均值则是$\tilde{\mu}_t$。我们的目标是求解$\tilde{\mu}_t$和$\tilde{\beta}_t$。
化简等式(4)得,
$$
\begin{eqnarray}
q(x_{t-1}|x_t,x_0)&\propto& \exp(-\frac{1}{2}((\frac{\alpha_t}{\beta_t}+\frac{1}{1-\bar{\alpha}_{t-1}})x^2_{t-1}-(\frac{2\sqrt{\alpha_t}}{\beta_t}x_t + \frac{2\sqrt{\bar{\alpha_{t-1}}}}{1-\bar{\alpha}_{t-1}}x_0)+C(x_t,x_0))) \\\
&=&\exp(-\frac{(x-\tilde{\mu}_t)^2}{2\tilde{\beta}_tI})
\end{eqnarray}
$$
省略常数项,求解以上等式,得到
$$
\begin{eqnarray}
\tilde{\mu}_t &=& \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_{t}}x_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t}x_0 \\\
\tilde{\beta}_t &=& \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\cdot \beta_t
\end{eqnarray}
$$
这时候方差已知,而均值$\tilde{\mu}_t$只和$x_t$和$x_0$有关。而对于$x_0$来说,我们可以通过等式(3)估算得到,
$$
\begin{equation}
x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}}(x_t - \sqrt{1-\bar{\alpha}_t}\tilde{z}_{t})
\end{equation}
$$
其中这里的$\tilde{z}_t$是一个未知的噪声,我们需要通过模型来预测。
这里的$x_0$只是一个估算的结果,不能作为最终结果输出。
通过等式(9),我们可以消去等式(7)中的$x_0$,得到
$$
\begin{equation}
\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}}(x_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha_t}}}\tilde{z}_{t})
\end{equation}
$$
然后我们就可以通过重参数化技巧来从$x_t$中采样$x_{t-1}$了。迭代这个过程,我们就可以得到$x_0$作为最终输出。
以下是这一步采样的代码实现。
1 |
def sample_x0_from_xt(xt, alpha_bar, t, pred_eps): |
在上一节我们知道,我们需要一个模型去预测噪声$\tilde{z}_t$,所以这个模型的输入是$x_t$和$t$,输出是$\tilde{z}_t$。而我们在前向扩散的过程中就已经获取了这个ground truth的噪声$z_t$,所以我们可以通过这个ground truth的噪声和预测的噪声之间的差异来训练模型。
对于DDPM来说,这个损失函数是MSE。
$$
L = ||z_t - \tilde{z}_t||_2
$$
尽管DDPM的主要思想是在如何进行扩散上,这个模型不是重点,但是我们还是需要大致了解一下的。
首先这个模型是基于UNet[5]的,UNet是一个经典的Encoder-Decoder图像分割模型,主要的特点是在上采样和下采样的过程中,都会通过一个跳跃连接来保留住低层次的特征信息。这个模型的架构如下图所示。
Fig. 3. U-Net. Adapted from [5]
相比于2015年的原版U-Net,DDPM中的每一步上采样或者下采样过程中,都有一个ResNet[6]的残差连接结构,然后再跟上一个Multi-Head Attention层[7]。
Fig. 4. 残差连接和 MultiHead Attention. Adapted from [6][7]
除此之外,对于时间信息$t$会被编码成一个embedding。如果是有条件输入的话,我们也可以把输入的条件信息(作为embedding)和time embedding相加。然后在模型的一些层中,再通过相加的方式添加到feature map中。
建立了这个模型之后,我们就可以通过前向扩散和后向扩散的过程来训练模型了。
通过实现以上的代码,用了一个小参数的简单模型和简单的数据集(CIFAR10)[8]。用了一个RTX8000训练了十几个小时,我们可以看到,模型的效果还是不错的。
Fig. 5. DDPM的简单生成结果
介绍完了DDPM,我们再来看一下CLIP[3]。相比于DDPM,CLIP并没有特别强的算法创新,但是它提供了一个很好的框架,用于建立自然语言和图像的关系。这个框架可以用于很多的任务,比如图像搜索,图像生成,图像分类等等。
CLIP是由OpenAI提出的多模态预训练算法,它的主要思想是通过一个超大的图像-文本数据集,来训练一个图像Encoder和一个文本Encoder。如果是相关的文本和图片,编码后的特征向量应该是相似的,如果是不相关的文本和图片,编码后的特征向量应该是不相似的。这个数据集有超过4亿个图片和文本的pair,完全是大力出奇迹。
Fig. 6. CLIP的模型架构. Adapted from [3]
如上图所示,CLIP模型包含一个Text Encoder和一个Image Ecnoder。它们用于分别提取文本和图片的特征向量到同一个特征空间。在预训练的过程中,通过计算余弦相似度(cosine similarity)作为损失函数。原论文中也提供了伪代码来作为参考,如下所示。
1 |
# image_encoder - ResNet or Vision Transformer |
因为整体思路较为简单,所以不再赘述。
CLIP的主要用途是将预训练好的模型用于下游任务。比如说作为zero-shot图像分类任务,如图6(2,3)所示。这个任务很好的展示了这个模型的一大优势,即通过超大的文本图像数据集建立了较为充分的知识,使得模型在没有针对性的训练的情况下,也能够很好的完成下游任务。
当然,模型也可以用于图像查询。在这个任务中,只要对需要查询的文本进行编码,然后和所有图片的编码计算余弦相似度,就可以通过找最大值得到最相关的图片。
另外就是用于文字生成图片的任务了,比如说AI绘画。我们可以将文本编码为特征向量,然后将这个特征向量作为输入,作为条件信息输入到刚才提到的DDPM中。
关于如何使用CLIP,请参考OpenAI的官方Github仓库(openai/CLIP)[9]。
本文主要介绍了AI绘画的一些原理,包括了DDPM,CLIP。但是现在流行的模型Stable Diffusion (基于Latent Diffusion[10])还没有介绍。而且AI绘画中还有很多内容,比如说sampler(DPM[11], DDIM[12]),这也是以后需要继续学习的方向。
2022-12-13 08:04:12
在一些场合下,我们需要同时运行多个Python程序,并且希望这些Python进程之间能互相通讯,发送一些值或者接收一些值。本文我们就来测试一下Python的跨进程通信不同方案的效率。
本文包含的内容有:HTTP, websocket, multiprocessing, gRPC, RabbitMQ等。
请考虑以下场景,要处理一个数据,我们需要有3步比较耗时的操作,而这个每一步的操作需要上一步的结果,如下图所示。
flowchart LR Input --> Step1 --> Step2 --> Step3 --> Output
在这里,有两种使用多进程并行的思路,使用多个进程,每个进程接受一个数据,处理完全部三步之后返回结果,每个进程之间相互独立,如下图所示。
flowchart LR subgraph Process3 direction LR Input3 --> p3s1[Step1] --> p3s2[Step2] --> p3s3[Step3] --> Output3 end subgraph Process2 direction LR Input2 --> p2s1[Step1] --> p2s2[Step2] --> p2s3[Step3] --> Output2 end subgraph Process1 direction LR Input1 --> p1s1[Step1] --> p1s2[Step2] --> p1s3[Step3] --> Output1 end
这种方法操作简单,不需要进程间通信,也容易扩展到更多的进程数,在绝大多数情况下都推荐使用。然而这种模式需要将3个Step的上下文都载入内存中,如果这些Step是占用内存很高的深度学习模型,那么内存将会成为一个严重瓶颈。
为了解决这个问题,我们可以使用另一种模式将其并行。
flowchart LRInput --> Step1 .-> Step2 .-> Step3 .-> Outputsubgraph Process1 Step1endsubgraph Process2 Step2endsubgraph Process3 Step3end
其中这里的虚线表示进程间通信(IPC)。相比于第一种并行方式,这种并行方式操作复杂,需要进程间通信,但是可以有效的减少内存占用。
然而,这种并行相比于第一种方案,需要消耗额外的时间在IPC上,因此我们需要测试一下不同IPC方案的效率。
如果以上图表没有正确渲染,请刷新页面。
以下实验都在以下环境运行:
1 |
CPU: i7-10900X |
需要通讯的内容为4种不同尺寸的numpy.ndarray
[1],数据类型为float64
。分别为:
这是最简单的方案,使用HTTP协议作为通信协议,将ndarray
转换成Python的嵌套List
,然后作为json发送。这种方案的优点是实现简单,不需要额外的依赖,缺点是从ndarray
和List
互相转换的开销大,而且json序列化的开销也很大。
这里HTTP通过fastapi
[2]实现,fastapi
是一个高性能的异步框架,可以很好的支持大量的并发请求。
这种方案和方案1类似,不过将ndarray
通过numpy内置的方法转换成bytes
,然后使用base64
编码,这样可以避免ndarray
和List
之间的转换,但是HTTP传输大规模的base64
编码的开销也很大。
这种方案和方案2类似,不过使用Websocket作为通信协议,这样可以避免HTTP的开销。因为Websocket可以发送ascii之外的字节,所以不需要base64
编码。
这里采用了multiprocessing.shared_memory
模块,使用SharedMemory
对象将ndarray
的地址共享给子进程。然后将SharedMemory
对象名字作为HTTP的返回值,客户端再通过名字获取SharedMemory
对象,这样可以避免ndarray
和List
之间的转换,也避免了base64
编码的开销。
这种方案和方案4类似,不过使用Websocket作为通信协议,这样可以避免HTTP的开销。
这种方案使用multiprocessing
模块的Listener
和Client
对象,使用multiprocessing
的Pipe
作为通信协议,这样可以避免HTTP的开销。
这种方案使用gRPC
[3]作为通信协议,使用protobuf
作为序列化协议,好处是方便客户端进行调用,但是gRPC有最大的消息长度限制(2GB)。
这种方案使用RabbitMQ
[4]作为通信协议,使用pika
[5]作为Python的客户端和服务端。这种方案的好处是可以使用RabbitMQ
的其他特性,比如消息队列,消息持久化等,但是有最大的消息长度限制(512MB)。
ndarray Shape | (1, 3, 224, 224) | (2, 1024, 16, 16) | (2, 3, 16, 224, 224) | (128, 1024, 1024) |
---|---|---|---|---|
HTTP + JSON | 290.00 ms | 1090 ms | 9230 ms | 259.00 s |
HTTP + Base64 Bytes | 26.40 ms | 51.5 ms | 398 ms | 12.30 s |
Websocket + Bytes | 4.27 ms | 15.0 ms | 171 ms | 5.14 s |
HTTP + Shared Memory |
10.70 ms | 18.1 ms | 127 ms | 3.13 s |
Websocket + Shared Memory |
4.34 ms | 14.9 ms | 127 ms | 3.82 s |
Multiprocessing Listener |
7.00 ms | 17.2 ms | 162 ms | 4.73 s |
gRPC + Bytes | 7.34 ms | 28.6 ms | 291 ms | 7.92 s |
RabbitMQ + Bytes | 9.35 ms | 25.7 ms | 243 ms | 超出消息长度 |
根据这个结果我们可以发现,方案4和方案5的性能是最好的,方案6的性能也很好,方案1和方案2的性能最差。
考虑网络传输协议,Websocket的性能是比HTTP好的。所以应该尽量使用Websocket作为网络传输协议。
考虑使用Base64还是Shared Memory,我们可以发现大数据的情况下,Shared Memory的性能是比较好的,但是它需要手动管理内存,可能会有一些问题。所以对于小数据,可以使用Base64,对于大数据,可以使用Shared Memory。
对于multiprocessing
模块的Listener
和Client
,它的性能略弱于Shared Memory,但是它不需要手动管理共享内存,而且它不需要用fastapi
之类的外部库,而且不需要转换成别的类型的数据,比较方便。但是正因为它没有使用fastapi
,以至于它不是很方便的进行异步处理。
gRPC
和RabbitMQ
的性能比较差,只比HTTP好一点点,比不上Websocket,所以不推荐使用。而且它们有最大的消息大小限制,所以传输数据时不太方便。
1 |
# server.py |
1 |
# client.py |
1 |
# server.py |
1 |
# client.py |
1 |
# server.py |
1 |
# client.py |
1 |
# server.py |
1 |
# client.py |
1 |
# server.py |
1 |
# client.py |
1 |
# server.py |
1 |
# client.py |
1 |
// npy.proto |
1 |
# server.py |
1 |
# client.py |
部署RabbitMQ的Docker容器:
1 |
docker run --name some-rabbit -p 5672:5672 rabbitmq:3 |
1 |
# server.py |
1 |
# client.py |